
QUIC Graphs: Relational Invariant Generation
for Containers

Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

University of Colorado Boulder
{arlen.cox, evan.chang, sriram.sankaranarayanan}@colorado.edu

Abstract. Programs written in modern languages perform intricate
manipulations of containers such as arrays, lists, dictionaries, and sets.
We present an abstract interpretation-based framework for automatically
inferring relations between the set of values stored in these containers.
Relations include inclusion relations over unions and intersections, as
well as quantified relationships with scalar variables. We develop an
abstract domain constructor that builds a container domain out of a
Quantified Union-Intersection Constraint (QUIC) graph parameterized by
an arbitrary base domain. We instantiate our domain with a polyhedral
base domain and evaluate it on programs extracted from the Python
test suite. Over traditional, non-relational domains, we find significant
precision improvements with minimal performance cost.

1 Introduction

Container manipulating programs are ubiquitous. Essentially all high-level pro-
gramming languages provide a standard library with container types, such as
arrays, lists, dictionaries, and sets. In this paper, we investigate static analysis
techniques for inferring assertions about the possible set of values that can be
stored in containers at run time. Our analysis abstracts containers by the set of
elements contained in them to infer facts about (a) the possible set of values in a
container; and (b) how these values relate to values stored in other containers. In
general, one may envision two main types of static analyses: (1) content-centric
analyses that infer assertions for the possible sets of values in each container, in
isolation; or (2) analyses that infer relations between the values stored in various
containers, as-a-whole.

def extendClass(X):
Y = set([x for x in X

if x >= c])
return Y

To illustrate this difference, consider the Python
code function extendClass in the inset (the name of
this function will become clearer below). This function
takes a set X and returns a set Y where Y is the subset
of elements from X such that each element is greater
than or equal to some variable c. An important post-condition of extendClass is
Y ⊆ {ν ∈ X|ν ≥ c}, but neither the content-centric nor the as-a-whole analyses
can produce this post-condition. The content-centric analysis, which represents
each set X and Y as individual variables in a domain for reasoning about values,
would produce Y ⊆ {ν|ν ≥ c} where ν ranges over the universe of values. Because

all values of X are not related to all values of Y in some way, a content-centric
analysis cannot represent any relationship between X and Y. As-a-whole analyses,
which reason only about the relationships between sets, can produce Y ⊆ X, but
fail to infer anything about the individual elements of Y. By combining these two
classes of analyses, our analysis finds the desired invariant: Y ⊆ {ν ∈ X|ν ≥ c}.

def extendClass(D):
E = {k:v for k,v in a.iteritems()

if k >= "%"}
return E

The extendClass function is abstracted
from a function in Processing.js1. A simpli-
fied version of the original function is shown
in the inset (in Python); the original set ver-
sion models the key set of this dictionary

version. This function copies a dictionary containing a number of values to an-
other dictionary. It only copies those elements that start with letters higher than
% in the ASCII table, specifically excluding keys starting with $. These dictio-
naries are used as objects, and in the context of this framework, $ is interpreted
as private and thus should not be copied. Functions like this one are pervasive in
programs written in dynamic languages because most run-time structures are
implemented using dictionaries (or objects, maps, or tables) and those run-time
structures are directly accessible by the developer and can be modified. As a
result, previously simple operations such as inheriting a class become complex
dictionary manipulations involving copy operations. To statically analyze pro-
grams written in dynamic languages, we require powerful new static analysis
techniques that can reason about these kinds of functions.

Our analysis tracks (subset) inclusion relations between expressions involving
set abstractions of containers through a special graph structure called a QUIC
graph. A QUIC graph is a succinct encoding of set expressions and inclusion
relations between them. The expressions represented by a QUIC graph are (1)
basic, atomic sets that abstract the set of values stored in a container and
singletons created by scalar expressions; (2) restricted unions and intersections
of the atomic sets; and (3) comprehensions of set expressions through first-order
predicates. The predicates are captured by an arbitrary base domain, which can
reason about program variables and formal bound variables that represent the
scalar-valued contents of a basic set. The QUIC graph is thus a compact structure
for storing a conjunction of subset constraints between set expressions. In this
paper, we define QUIC graphs and build abstract domain operations over these
graphs. The QUIC graph domain is designed to yield a tight integration between
the base domain and the QUIC graph domain so that the resulting analysis can
transfer facts from one domain to another, quite seamlessly.

The content-centric analysis of containers is rather well understood (e.g.,
[7, 11, 13]). Such analyses focus on strategies for partitioning or splitting summary
variables that smash the contents of the container into an essentially weak-updated
scalar variable. These techniques are orthogonal and complementary to our work
here. With summary variables, one might capture independent comprehensions,
such as X ⊆ {ν|p(ν)} ∧ Y ⊆ {ν|p′(ν)} for some predicates p and p′. If the
predicates p and p′ are the same or related, then these facts may indirectly imply

1 http://processingjs.org/

http://processingjs.org/

a relation between X and Y but essentially only through their contents. On the
flip side, the pure container-as-a-whole approach would track relations directly
between X and Y without characterizing their contents. Some existing containers-
as-a-whole approaches incorporate some fixed content reasoning (e.g., [23]). In
this paper, we present a tight integration of these two approaches with domains
for reasoning about scalar variables and their relations to the set elements. As a
result, the QUIC graph domain promises to be a lot more powerful than a simple
conjunction of both individual domains.

We have implemented the QUIC graph domain for a simple imperative
programming language with integers and sets (of integers). The language captures
basic arithmetic over integers and operations over sets such as union, intersections,
difference, insertion/deletion of elements, and iteration over sets. We implemented
analyzers using the QUIC graph domain, as well as two domains representing the
content-centric and container-as-a-whole approaches. The evaluation was carried
out by translating a variety of set manipulating programs from the Python test
suite. The results are quite promising: the QUIC graph domain is more precise
than the other domains, proving more properties than a simple combination of a
content-centric approach and a container-as-a-whole approach.

Contributions: In this paper, we make the following contributions:

– We identify the need for simultaneous reasoning about containers as-a-
whole and their contents to enable modular, precise reasoning of container-
manipulating programs (Sect. 2).

– We describe QUIC graphs to represent universally-Quantifed Union and
Intersection set Constraints in a canonical manner using a hypergraph data
structure. We build an abstract domain (functor) based on QUIC graphs. A
novel aspect of our domain is the use of predicate edge labels to capture set
comprehensions (Sect. 3).

– We present a framework for inference using QUIC graphs. We show how to
utilize the structure of QUIC graphs to compute all logical implications of
a given QUIC graph. We present the inference procedure for strengthening
base domain invariants within a QUIC graph. Finally, we show how laziness
significantly improves the cost of inferring consequences of QUIC graphs, and
describe an efficient implementation (Sect. 4).

– We define an abstract domain using QUIC graphs with inference and show
how all domain operations and reductions are easily implemented using lazy
inference (Sect. 5).

– We evaluate the effectiveness of our abstract domain on a set of benchmarks
from the Python test suite. We find that for a reasonable performance
overhead, our abstract domain is significantly more precise than either a
content-centric or a container-as-a-whole approach and unlike the content-
centric and container-as-a-whole approaches can automatically prove most
properties specified in the Python test suite for set operations (Sect. 6).

program ::= decl∗ stmt∗
decl ::= int scalarVar | set setVar
stmt ::= scalarVar := scalarExpr

| setVar := setExpr
| loop stmt∗
| branch stmt∗ orelse stmt∗
| havoc setVar
| assume conditional | assert conditional

setExpr ::= ∅ |{scalarExpr}| setVar | setExpr∪setExpr
| setExpr∩setExpr | setExpr\setExpr

scalarExpr ::= scalarVar | scalarConst | scalarUnary(scalarExpr)
| scalarBinary(scalarExpr, scalarExpr) | choose(setExpr)

conditional ::= scalarConditionals | setExpr⊆setExpr | scalarVar in setVar
setVar ::= X,Y,Z

scalarVar ::= x,y, z
scalarConst ::= c

Fig. 1. An imperative, set-manipulating programming language. A sequence of a symbol
α is written as α∗.

2 Overview

In this section, we walk through inferring the desired post-condition for the
extendClass example from Sect. 1 to highlight the main challenges in obtaining
precise combined content-as-a-whole invariants that motivate our design of the
QUIC graph domain. At a high-level, deriving the desired post-condition for
the extendClass function requires the careful application of transitive closure
of inclusion constraints, an effective reduction [6] strategy with base domain
elements, and a non-trivial join operator.

2.1 Set Language

We assume an imperative programming language with scalar values and set values
whose elements are scalars, shown in Figure 1. We assume scalar operations (e.g.,
addition, subtraction, multiplication, and division) are given as unary or binary
operators (scalarUnary or scalarBinary, respectively). For convenience, we fix a
single scalar type (integers) in our language. Unless otherwise mentioned, sets
are assumed to range over this type (integers). However, our framework is quite
general. Because we only assume the base domain is a sound abstract domain,
we can handle a variety of types including integers, floats, and strings by using
base domains designed to reason over scalar variables of those types. We do not
address sets of sets or complex structures such as lists in this paper. However,
our framework can be extended to handle these types by instantiating with more
complex base domains such as another domain for sets.

For the purposes of analysis, we take an input program and lower the pro-
gram to introduce additional instrumentation variables. The lowering converts

1 def extendClass(X) {
2 Y := ∅;
3 for (x in X) {
4 if (x > c) {
5 Y := Y ∪ {x};
6 }
7 }
8 return Y;
9 }

1 def extendClass(X) {
2 Xo := ∅; Xi := X; Y := ∅;
3 loop {
4 assume Xi 6= ∅;
5 x := choose(Xi); Xi := Xi \ {x};
6 branch {
7 assume x > c; Y′ := Y ∪ {x};
8 Y := Y′;
9 }

10 orelse {
11 }
12 Xo := Xo ∪ {x};
13 }
14 assume Xi = ∅;
15 return Y;
16 }

Fig. 2. Left: the extendClass example that filters positive elements from a set X into a
set Y . Right: its lowered version.

all loops (e.g., for-in) into a single non-deterministic loop construct and all
conditional statements into a non-deterministic branch construct. The havoc
statement is an arbitrary value assignment for modeling unknown effects, and
the assume statement is used to encode the conditions in each branch. One key
instrumentation transforms each for-in loop over a set X to introduce two sets
Xo,Xi that are assumed to partition X (i.e., X = Xi]Xo). The set Xo represents
all variables that have been iterated over thus far. Likewise, Xi represents the
elements of X that remain to be iterated over. The iteration order is assumed to
be non-deterministic. The loop exits when Xi = ∅ or alternatively Xo = X. We
assume that iterations over a set X do not modify X in the body of the loop (as
is the standard semantics for container iteration).

Example 1. Fig. 2 (left) shows a translation of the Python extendClass example
from Sect. 1 to an imperative, set-manipulating program. This program filters
elements from an input set X greater than or equal to c into a set Y. The set Y
is a variable introduced in the translation to name the set being constructed by
the comprehension. The lowered version of this program is also shown alongside
(right).

2.2 Motivating Example

In Fig. 3, we annotate the lowered version of the extendClass from Fig. 2. At
program point 1, set Xi is initialized to X, while Xo and Y are initialized to the
empty set ∅. The extendClass loop begins at point 2. An arbitrary element x is

def extendClass(X) {
1 Xo := ∅; Xi := X; Y := ∅;
2 loop {
3 X = Xi ∪Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
4 assume Xi 6= ∅; x := choose(Xi); Xi := Xi \ {x};
5 branch {
6 assume x > c; Y′ := Y ∪ {x};

7.a
X = Xi ∪ {x} ∪Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
∧ Y′ = Y ∪ {x} ∧ x > c

7.b
X = Xi ∪ {x} ∪Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
∧ Y′ = Y ∪ {x} ∧ {x} = {ν ∈ {x}|ν > c} ∧ x > c

Y := Y′;

8 X = Xi ∪ {x} ∪Xo ∧ Y ⊆ {ν ∈ Xo ∪ {x}|ν > c} ∧ x > c

}
orelse {

9 X = Xi ∪ {x} ∪Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
}

10 Xo := Xo ∪ {x};
11 }
12 assume Xi = ∅;
13 Y ⊆ {ν ∈ X|ν > c}

return Y;
}

Fig. 3. Inferring QUIC graph invariants on the extendClass example.

chosen out of set X at point 4 with the choose statement and removed from set Xi.
The element x is added to set Y in the first case (point 6) of the non-deterministic
branch, while set Y is left unchanged in the other (point 9). The final assignment
in the loop (at point 10) simply moves the element x into set Xo to continue the
iteration.

The boxed formulas in Fig. 3 are program invariants that we infer (under the
pre-condition true), that is, the fixed-point result of an abstract interpretation.
Our goal is to be able to derive the post-condition Y ⊆ {ν ∈ X|ν > c}, that is,
output set Y is a subset of the positive elements of the input set X, at program
point 13. Here and in the rest of this paper, we use ν as the bound variable
for all comprehensions. In this figure, we selectively show the key constraints
needed to derive this post-condition. We first observe that although inclusion
constraints plus comprehension expressions are sufficient to state the desired
post-condition, the inferred loop invariant at point 3 requires a more expressive
set expression language (i.e., union expressions). It is straightforward to see that

this loop invariant X = Xi ∪Xo along with the loop exit condition Xi = ∅ implies
the desired post-condition and that the initial state where Xi = X ∧Xo = Y = ∅
implies the loop invariant.

Let us consider the fixed point iteration of the loop (i.e., showing that
loop invariant is inductive and thus consecutes) and focus on the transition to
invariant 7.a—the difference with respect to the loop invariant is shown shaded.
This transition begins with the addition of element x to set Y. The assume is
reflected in the invariant with a base domain constraint x > c shown to the
right in the box. It is necessary to transfer the relationship between Y and Xo
to Y′ and Xo to generate the desired function post-condition. Knowing when to
transfer these relationships by transitivity is critical to both performance and
precision. The QUIC graph representation allows us to limit the guesswork of
when to apply the various transitivity rules to derive additional facts.

In invariant 7.b, we show a reduction step that transfers information from the
base domain to the QUIC graph domain. In particular, we have that x > c, so it is
also the case that ∀ν ∈ {x} . ν > c (i.e., applying a ∀-introduction rule). In terms
of QUIC graphs, we have that any constraint of the form {x} ⊆

{
ν ∈ T̄ |B[ν]

}
can be strengthened to {x} ⊆

{
ν ∈ T̄ |B[ν] ∧ ν > c

}
where B is a predicate

described by the base domain and T̄ is any basic set expression, including {x}.
For abstract interpretation, the conjunction ∧ becomes a meet operator u on
base domain elements. Thus, we have that {x} ⊆ {ν ∈ {x}|ν > c} as shown in
invariant 7.b. This “seed” constraint is sufficient to derive other ones, such as
{x} ⊆ {ν ∈ Y′|ν > c}, by transitivity on demand. The QUIC graph structure
with singleton known-scalar sets enables an eager transfer of information from
the base domain coupled with lazy propagation of this information (see Sect. 4).

This reduction step is used for deriving the invariant at point 8. At point 8,
we show the invariant derived from 7.b by projecting out Y (and then renaming
Y′ to Y). From invariant 7.b, we can intuitively see that Y′ ⊆ {ν ∈ Xo|ν > c} ∪
{ν ∈ {x}|ν > c} by applying transitivity (and that union with any set is mono-
tonic), so we have that Y′ ⊆ {ν ∈ Xo ∪ {x}|ν > c}, which gets to our desired
result after projecting the old Y and renaming Y′ to Y. It is not difficult to check
this step; rather, the main challenge in an automated analysis is guessing that
these are the appropriate steps to obtain the desired invariant. For example,
both Y′ ⊆ {ν ∈ X ∪ {x}|ν > c} and Y′ ⊆ Xo∪{x} are sound over-approximations
of the projection that are syntactically close, but now we have lost too much
precision to get our desired post-condition. From the QUIC graph perspective,
this derivation is a propagation of facts across nodes and edges that can be done
on demand by the lazy closure (see Sect. 4).

The invariant at point 9 in the unchanged case entails the invariant at which
we just arrived at point 8 (except for the base domain constraint), so the result of
the join at program point 10 is the invariant at point 8 without the base domain
constraint x > c, and after the assignment, we get exactly the loop invariant at
point 3.

In summary, it is difficult to derive enough constraints via transitivity and
strong enough ones via reduction from the base domain. On the flip side, transitive

closure, even with restricted union and intersection constraints, is exponential
(see Sect. 4). The QUIC graph representation eases this tension by representing
inclusion constraints over unions, intersections, and comprehensions in a canonical
manner that facilitates on-demand propagation of information.

3 QUIC Graphs

A Quantified Union/Intersection Constraint graph is a graph data structure that
represents inclusions between set expressions. Throughout the rest of the paper
we use the notation X,Y, Z with subscripts to represent set variables and x, y, z
with subscripts to represent base domain variables. The special variable ν will
be used as a formal bound variable for set comprehensions, as will be explained
in this section. The symbol T represents atomic set expressions – one of three
possible elements: the empty set ∅, a singleton set containing a base domain
variable {x} or a set variable X. The symbols T̄ i, T̄u represent a number of T s
in an intersection or a union respectively.

Definition 1 (QUIC edge). Let T i1, . . . , T im = T̄ i and Tu1 , . . . , T
u
n = T̄u be

symbols representing finite sets and B be a base domain abstract state involving a
bound variable ν, acting as a predicate where > is true and ⊥ is false. A QUIC
edge is a constraint

m⋂
i=1

T ii ⊆

ν ∈
m⋃
j=1

Tuj

∣∣∣∣∣∣B[ν]

 represented using the notation
⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
B

which is an edge in an edge labeled hypergraph.

We use dots above the set operators simply to make clear that they are part of
the syntax of a QUIC constraint or a QUIC edge. Graphically a QUIC edge is
represented as a hyperedge:

T im

...
...

T i1

Tun

Tu1

∪∩
B[ν]

For convenience, if there is only one T in the union (respectively intersection),
we elide the union (respectively intersection) hex from the figure. Additionally, if
the label B[ν] is top in the base domain, we elide the label from the edge.

Definition 2 (QUIC graph). A QUIC graph G ∈ G̃ is an edge labeled hyper-
graph constructed of QUIC edges. It represents a conjunction of constraints where
each constraint corresponds to one QUIC edge in the graph. A QUIC graph has
the following syntax:

G ::= G1 ∧ G2

|
⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
B

A QUIC graph is a canonical representation of the set of conjoined constraints.
It is designed to be compact and to allow efficient inference operations (see Sect. 4).

We provide a series of examples to demonstrate the QUIC graph representation.

Example 2 (Basic QUIC graphs). Consider that would be produced after line 1
from the example in Fig. 3:

Xo ⊆ ∅ ∧ Xi ⊆ X ∧ X ⊆ Xi ∧ Y ⊆ ∅

This is represented as a QUIC graph:

Xo ∅ Y X Xi

Unlike the constraint formula, the symbols X, Xi, and ∅ only occur once in
the graph. This makes the relationships more clear and eliminates possible
redundancy.

Conjoining multiple constraints produces a QUIC graph with multiple edges
and including unions or intersections requires a hypergraph to show the relation-
ships:

Example 3. We wish to encode the formula:⋂̇
X1 ⊆̇

⋃̇
X2

∣∣∣
ν≥5
∧
⋂̇
X1, X3 ⊆̇

⋃̇
X4

∣∣∣
ν≤10

.

We draw this using the following hypergraph:

X1 X2

X3 ∩ X4

ν ≥ 5

ν ≤ 10

To be practical, a representation for set constraints cannot stand alone. There
must be a way to represent relationships between sets and base domain variables
as well. To do this we construct a combined domain where elements are pairs
(G,B) ∈ S̃ = G̃× B̃ where G is a QUIC graph domain instance and B is a base
domain instance. Note that the base domain has two roles: (a) it labels edges in
the QUIC graph and (b) it captures invariants on base domain variables.

To specify the concretization for both QUIC graphs and QUIC graphs com-
bined with an external base domain, a concretization (where γ is overloaded for
all concretizations) for the base domain is required:

γ : B̃ → P((BaseVar→ BaseVal)× P(BaseVal))

The symbol BaseVar is all base domain variables, BaseVal is all base domain
values. This is a non-standard concretization because given some abstraction, it

returns a set of functions that map base domain variables to base domain values
and for each function, there is a corresponding set that contains the base domain
values to which the bound variable ν can be assigned. This is used to define
concretization for QUIC graphs

Definition 3 (Concretization). The concretization γ of a QUIC graph G has
the following type, given that SetVar is all set domain variables:

γ : G̃→ P((SetVar→ P(BaseVal))× (BaseVar→ BaseVal))

Where the result is a set of pairs of functions (η, ηB), where η maps set variables
to sets of base domain values and ηB maps base domain variables to base domain
values. These two functions mappings are valid with respect to constraints both
on the sets and on the base domain.

The concretization function is then defined as such:

γ(G1 ∧G2) def= {(η, ηB)|(η, ηB) ∈ γ(G1) and (η, ηB) ∈ γ(G2)}

γ
(⋂̇ [

T i1, · · · , T in
]
⊆̇
⋃̇

[Tu1 , · · · , Tum]
∣∣∣
B

)
def=(η, ηB)

∣∣∣∣∣∣
(ηB , b̄) ∈ γ(B) and
for all ν.

(
ν ∈ η(T i1) and · · · and ν ∈ η(T in)

)
implies

(
ν ∈ b̄ and (ν ∈ η(Tu1) or · · · or ν ∈ η(Tum))

)

The concretization for a combined domain S is the same set of pairs (η, ηB),
so the type and concretization follow:

γ : G̃× B̃ → P((SetVar→ P(BaseVal))× (BaseVar→ BaseVal))

γ((G,B)) def=
{

(η, ηB)|(η, ηB) ∈ γ(G) and (ηB , b̄) ∈ γ(B)
}

Expressivity: We now discuss the expressivity limitations of QUIC graphs. As
such, QUIC graphs allow unions, intersections and comprehensions of sets but in
a restricted manner. We motivate some of our design choices here.

The first expressivity restriction arises from the manner in which compre-
hension is introduced in our language. For instance, we are able to express
inclusions of the form X ⊆ {ν ∈ Y | B[ν]} through a QUIC edge. However,
QUIC graphs as presented here cannot express the reverse inclusions of the
form {ν ∈ X|B[ν]} ⊆ Y . There are two main reasons for this restriction: (a)
Representing reverse inclusions requires a new type of edge relation along with
fresh reduction rules for this edge. Additionally, there are many interactions
between this new type of relation and existing relations that need to be cap-
tured. (b) Reverse inclusions require an abstract domain that implements the
underapproximate semantics whereas the inclusions used in QUIC graphs use the
standard overapproximate abstract semantics. This ensures that existing abstract
domains can be integrated with QUIC graphs without introducing new domain

Set Operation Operation using Union/Intersection

X ⊆ Y] Z ⇔ X ⊆ Y ∪ Z ∧ Y ∩ Z ⊆ ∅
Y] Z ⊆ X ⇔ Y ⊆ X ∧ Z ⊆ X ∧ Y ∩ Z ⊆ ∅
X ⊆ Y \ Z ⇔ X ⊆ Y ∧ X ∩ Z ⊆ ∅
Y \ Z ⊆ X ⇔ Y ⊆ X ∪ Z

Fig. 4. Encoding set difference and disjoint union in QUIC graphs.

operations. A full theory of QUIC graphs that captures both types of relations
will be tackled in the future.

The other expressivity limitation arises from the introduction of union and
intersection operations. Note that the relation X ∪ Y ⊆ Z can be equivalently
expressed simply as X ⊆ Z ∧ Y ⊆ Z. Likewise the intersection Z ⊆ X ∩ Y ⇔
Z ⊆ X ∧ Z ⊆ Y . This motivates the direction of the union and intersection
hyperedges in QUIC graphs. We do not directly represent relations between
nested unions and intersections unless special existentially quantified variables
are permitted in the graph.

Example 4. For instance, the relation (X1 ∪X2)∩X3 ⊆ X4 cannot be expressed
unless a special existentially quantified set variable X5 is introduced with the
constraints ⋂̇

X5 ⊆̇
⋃̇
X1, X2

∣∣∣
>
∧
⋂̇
X1 ⊆̇

⋃̇
X5

∣∣∣
>

∧
⋂̇
X2 ⊆̇

⋃̇
X5

∣∣∣
>
∧
⋂̇
X5, X3 ⊆̇

⋃̇
X4

∣∣∣
>

Finally, relations involving disjoint unions and set difference can also be
represented directly using QUIC graph as shown in Figure 4.

Self Loops: Self-loops on QUIC graphs are quite useful to encode assertions
that are true of the contents of X in relation to the scalar program variables
x1, . . . , xn.

Example 5. Let X be a set and x be a program variable. We wish to express that
every element in X is between x and x+ 10. We do so in the QUIC graph domain
using the self-loop from X to itself labeled by the assertion ν ≥ x ∧ ν ≤ x+ 10.
In effect, the loop represents the containment relation written

X ⊆ {ν ∈ X | ν ≥ x ∧ ν ≤ x+ 10} or ∀ν ∈ X. ν ≥ x ∧ ν ≤ x+ 10 .

QUIC graphs naturally represent relationships between set variables, singleton
sets and the empty set. However, QUIC graphs do not necessarily represent
all possible relationships. In the next section, we show how to derive other
relationships from those already in a QUIC graph.

4 Closure

The closure of a QUIC graph adds all of the implied logical facts to both the
QUIC graph and the base domain. Most of the domain operations of a QUIC
graph are defined in terms of the closure by the application of inference rules to
add edges to a QUIC graph and strengthen the existing edge labels.

Inference rules are shown in full in Fig. 5. We use three judgment forms.
One states when given a combined domain of a QUIC graph and a base domain,
S = (G,B), a particular containment relationship is derivable. If the relationship
is derivable, the inference judgment provides a predicate Be that holds on that
relationship. The judgment takes the form

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
Be

,

where T̄ i is the set of intersected vertices and T̄u is the set of unioned vertices.
This judgment relies on an auxiliary judgment B ` x = y where x and y are
base domain variables. This judgment states when an equality between variables
is derivable from a base domain element (and is supplied by the base domain).
We also define a judgment (G,B) ` x = y that states when an equality can be
derived from set constraints.

4.1 Inference Rules

We now explain the inference rules for QUIC graphs in detail. A brief explanation
of the rules follow.

The (Emp) inference rule generates QUIC graph edges from the empty set
to any node, labeled with the bottom base domain element ⊥ (i.e., with the ∅
concretization or is equivalent to the predicate false).

Example 6. Consider the QUIC graph G

∅ X

By applying (Emp), we get the QUIC graph G′:

∅ X
⊥

The (Self-Loop) and (Self-Prop) inference rules generate and strengthen
the labels present on self loops in QUIC graphs. The strengthening takes infor-
mation from an outgoing edge and propagates it back to the self loop.

Example 7. Consider the QUIC graph G

Z

Y

X
∪

ν < 17

(G ∧
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Be

, B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Be

(In-Graph-R)
(G,B) `

⋂̇
∅ ⊆̇

⋃̇
T̄u
∣∣∣
⊥

(Emp)

(G,B) `
⋂̇

T ⊆̇
⋃̇

T

∣∣∣
>

(Self-Loop)
(G,B) `

⋂̇
T ⊆̇

⋃̇
T̄u
∣∣∣
Ba

(G,B) `
⋂̇

T ⊆̇
⋃̇

T

∣∣∣
Bb

(G,B) `
⋂̇

T ⊆̇
⋃̇

T

∣∣∣
BauBb

(Self-Prop)

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Be

(G,B) `
⋂̇

T, T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Be

(Add-Left)
(G,B) `

⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
Be

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T, T̄u
∣∣∣
Be

(Add-Right)

(G,B) `
⋂̇

T i ⊆̇
⋃̇

Tu1 , · · · , Tum
∣∣∣
B0

(G,B) `
⋂̇

Tuj ⊆̇
⋃̇

Tuj

∣∣∣
Bj

, for j = 1 · · ·m

(G,B) `
⋂̇

T i ⊆̇
⋃̇

Tu1 , · · · , Tum
∣∣∣
B0u
(⊔m

j=1
Bj

) (Union-Prop)

(G,B) `
⋂̇

T ij ⊆̇
⋃̇

T ij

∣∣∣
Bj

, for j = 1 · · ·m (G,B) `
⋂̇

T i1 , · · · , T in ⊆̇
⋃̇

Tu

∣∣∣
B0

(G,B) `
⋂̇

T i1 , · · · , T in ⊆̇
⋃̇

Tu
∣∣∣
B0u
(dm

j=1 Bj

) (Inter-Prop)

(G,B) `
⋂̇

T̄ ia ⊆̇
⋃̇

T, T̄ua

∣∣∣
Ba

(G,B) `
⋂̇

T, T̄ ib ⊆̇
⋃̇

T̄ub

∣∣∣
Bb

(G,B) `
⋂̇

T̄ ia, T̄
i
b ⊆̇

⋃̇
T̄ua , T̄

u
b

∣∣∣
Ba

(Union-Trans)

(G,B) `
⋂̇

T̄ ia ⊆̇
⋃̇

T

∣∣∣
Ba

(G,B) `
⋂̇

T, T̄ ib ⊆̇
⋃̇

T̄u
∣∣∣
Bb

(G,B) `
⋂̇

T̄ ia, T̄
i
b ⊆̇

⋃̇
T̄u
∣∣∣
BauBb

(Inter-Trans)

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Be

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
BeuB

(Base-Str) B ` x = y

(G,B) `
⋂̇
{x} ⊆̇

⋃̇
{y}
∣∣∣
ν=x

(Eq-Base)

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Ba

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
Bb

(G,B) `
⋂̇

T̄ i ⊆̇
⋃̇

T̄u
∣∣∣
BauBb

(Double-Edge)

(G,B) `
⋂̇
{x} ⊆̇

⋃̇
{y}
∣∣∣
Ba

(G,B) `
⋂̇
{y} ⊆̇

⋃̇
{x}
∣∣∣
Bb

(G,B) ` x = y
(Eq-Set)

Fig. 5. Inference rules for closure of QUIC graphs. Notation: T̄ i, T̄u are sets of vertices,
T are individual vertices of the graph, B,Ba, Bb are base abstract states and x, y are
base domain variables.

Evaluating the (Self-Loop) rule on Z gives G′ on the left. Evaluating the
(Self-Prop) rule on Z and X ∪ Y pushes the predicate ν < 17 onto the self
loop at Z, giving G′′ on the right:

Z

Y

X
∪

ν < 17
Z

Y

X
∪

ν < 17

ν < 17

The (Add-Right) rules allows adding extra elements to the union on the
right-hand side of an inclusion. (Add-Left) is the dual rule for intersection.
Example 8. Consider the QUIC graph G on the left. Applying (Add-Right) to
Z and X, adding Y , gives the QUIC graph G′ on the right:

Z

Y

X
ν > 0 Z

Y

X
∪

ν > 0

The (Union-Prop) rule pushes information from self loops backward onto
edges. (Inter-Prop) performs the same operation on intersections.
Example 9. Consider the QUIC graph G on the left. Applying (Union-Prop)
to Z, X and Y yields the graph shown to the right.

Z

Y

X
∪

ν < 12

ν > 5

ν > 3

Z

Y

X
∪

ν < 12 u (ν > 5 t ν > 3)

ν > 5

ν > 3

The (Union-Trans) rule combines two union edges to produce a single union
edge. This rule loses information from one of the edges, but that information
can be regained through the application of (Union-Prop). We write u and t
for the meet and join operator in the base domain, respectively. (Inter-Trans)
does the same for intersection without losing information.
Example 10. Consider the QUIC graph G on the left. The two union edges are
combined to produce the union edge on the right. Even though ν < 1 is a stronger
constraint than ν < 2, the resulting constraint is the weaker ν < 2.

X0

X1

X2
∪

X3

X4

∪
ν < 2

ν < 1
X0 ∪

X1

X3

X4
ν < 2

The (Double-Edge) rule merges two edges between the same vertices into
a single edge. QUIC graphs do not track multiple edges between the same two
vertices, so a duplicate edge must immediately be converted to a single edge with
this rule.

Example 11. Consider the two edges on the left. Since QUIC graphs cannot
represent these, they are combined into the single edge on the right.

X Y

B2

B1

X Y
B1 u B2

The rule (Base-Str) strengthens any edge in the graph with the current
facts from the base domain B. The rule (Eq-Base) strengthens relationships
in the set domain by adding a constraint on the bound variable. The latter also
uses equality in the base domain to infer equalities in the set domain. Oppositely,
(Eq-Set) uses equalities in the set domain to infer base domain equalities.

Definition 4 (Closure). Let (G,B) be a QUIC graph and a base domain pred-
icate. The closure (G∗, B∗) is the conjunction of all⋂̇

T̄ i ⊆̇
⋃̇
T̄u
∣∣∣
Be

such that (G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
Be

and the constraining of B with all equalities x = y given by the judgment
(G,B) ` x = y.

4.2 Soundness

We first define soundness for systems of inference rules. For a QUIC graph analysis
to be sound, the underlying system of inference rules must be sound.

Definition 5 (Inference Soundness). An inference is sound if the following
two conditions hold:
1. if (G,B) `

⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
Be

, then γ((G,B)) ⊆ γ
(⋂̇

T̄ i ⊆̇
⋃̇
T̄u
∣∣∣
Be

)
.

2. if (G,B) ` x = y, then for all (η, ηB) ∈ γ((G,B)), we have that ηB(x) =
ηB(y).

Let us assume that B̃, the base domain, is a sound abstract domain [5].

Theorem 1. The inference rules in Figure 5 are sound according to Definition 5.

4.3 Complexity

Closure of a QUIC graph is potentially expensive since the number of edges in
the closure can be exponential in the worst case.

Theorem 2. There are O(2n) possible hyperedges in a QUIC graph with n
vertices.

Without “tactics” to apply the rules cleverly in an implementation, the
inference over QUIC graphs is intractable.

4.4 Lazy Inference Implementation

We now discuss how the inference operation is implemented in our approach.
The goal of the implementation is to avoid a blowup in the number of graph
edges and running time each time a closure is to be computed. Lazy inference is
a tactic that computes an effective closure on demand. It is composed of many
strategies. We describe the most important concepts used in our implementation.
(a) Simplification: We apply many simplification passes to keep the QUIC graph
in a canonical form. This automatically takes into account many of the inference
rules from Fig. 5. (b) Lazy inference: Instead of computing the closure eagerly
and adding a set of extra edges to the graph, we do so lazily whenever edge
membership queries are issued by the abstract domain. (c) Partial closure: We
note that many of the edges generated by a closure are not necessarily useful as
invariants for proving properties. Therefore, we have implemented heuristics that
choose edges to query. We call this process candidate generation since it affects
which invariant candidates are considered by our analyzer at each step.

Simplification: Simplification consists of many different parts. The first simplifi-
cation deals with edges from the empty set ∅. As such, they do not contribute to
the inference. We assume that these edges implicitly exist but do not represent
them.

Next, we consider equivalence classes of set variables. Two sets X,Y are
equivalent if X ⊆ Y ∧ Y ⊆ X. Equivalence classes are identified using a maximal
strongly connected component algorithm on the QUIC graph. Equivalence classes
of sets can be compacted and one representative is chosen using a pre-defined
variable ordering. All membership queries involving members of equivalence
classes are first rewritten in terms of the representative members of the classes.

The (Double-Edge) rule is implicitly implemented by our data structure
whenever we attempt to add two edges between the same set of nodes. Finally,
we use (Self-Loop), (Self-Prop), (Union-Prop) and (Inter-Prop) to
propagate labels and add new edges between representatives of equivalence
classes. These rules also strengthen the labels on edges.

Lazy Inference: Next, we implement inference on demand by applying the
inference rules to decide if a queried edge is present in the graph. This is performed
by iterating the (Union-Trans) and (Inter-Trans) rules to compute transitive
closures.

Candidate Generation: The computation of a lazy inference is driven by the choice
of candidate query edges that we wish to add to the graph. To this end, a candidate
generation heuristic is used in our implementation to choose candidate invariant
facts. There are many possible heuristics for generating candidate query edges.
We use set expressions that appear in the program including properties to be
proved as a source of edges to keep in the partial closure. Another choice includes
edges that are generated through transfer functions such as assignments. Once
generated, we keep an edge as a candidate edge for future inference computations.

5 Domain Operations

In this section, we will discuss the abstract domain operations over the reduced
product domain of QUIC graphs and the base domain B̃ for base domain variables.

Notation: Let G be a QUIC graph. We will write G[X � X0] to denote the graph
obtained by changing the label of vertex X to X0. We extend the notation to
set expressions so that T [X � X0] denotes the substitution of X by X0 for each
occurrence in the expression T .

We define abstract domain transition functions using semantic functions:

JstmtKS : S̃ → S̃

These functions are parameterized by stmt, which is a command in the language
of sets and base domain operations. It takes an abstract state S = (G,B) ∈ S̃
composed of a graph G and a base domain element B and returns an abstract
state S′ that represents the state after having executed command stmt on S.

Simple Transfer Functions: The transfer functions for some basic assignment
states are represented below. In each case, the result may not be closed. Therefore,
we may apply inference on the result, if necessary.

Jhavoc XKS(G,B) def= (G[X � X0], B) X0 is fresh

JX:=∅KS(G,B) def=
(
G[X � X0] ∧ X ∅

⊥
, B

)
X0 is fresh

JX:=TKS(G,B) def=

G[X � X0] ∧ X T , B

 X0 is fresh

The command havoc X assigns X to a non-deterministic value. Rather than
projecting the vertex X from the graph, we rename the existing vertex to a fresh
variable X0. The vertex X0 remains in the graph as a history variable. Operations
such as join and widening will eliminate the necessary history variables, ensuring
that they do not propagate out of scope. However history variables will exist for
as long as possible as this may allow additional relationships to be inferred.

The command X:=∅ assigns X to the empty set. Because it is performing a
destructive update to X, X is renamed to a history variable X0 as is standard
when performing a destructive update. This leaves the symbol X completely
unconstrained so that when constraints are added to X, those are the only
constraints on X. The added constraint here is X ⊆ ∅, labeling it with the
strongest possible predicate ⊥.

The command X:=T assigns a set element T to X. This creates the two edges
representing both X ⊆ T and T ⊆ X. The edge labels are set to > and thus not
shown as all the information from B can be added to these edges through the
inference procedure.

Meet (Intersection): The meet of two abstract states (G1, B1) u (G2, B2) is the
conjunction of the set constraints and meet in the base domain (i.e., (G1 ∧
G2, B1 u B2) where we overload the u notation for both the QUIC graph and
the base domain). Note that viewing the set constraints as graphs, meet is the
union of two graphs.

Set Assignment Rule: We now complete domain operations for assignments of
the form X:=T1 ∪ T2 · · · ∪ Tn (similarly for X:=T1 ∩ · · · ∩ Tn). The basic idea is
to replace X by a history variable X0 and introduce hyper-edges to capture the
new relations formed. For simplicity, we consider the case n = 2

JX:=T1 ∪ T2KS(G,B) def=

G[X � X0] ∧ X

T2[X�X0]

T1[X�X0]
∪ , B

X0 is fresh

Intersection, disjoint union and set difference operations are similar. They rename
X to a fresh variable X0 and rename T1 and T2 similarly, if appropriate. Then a
constraint that represents the appropriate equality is added to the QUIC graph.

Base Domain Assignment: An assignment to the base domain variables x := e
will result in three changes: (a) applying the assignment to the base domain
element B, (b) applying the assignment to each edge label in the QUIC graph
G and (c) any singleton node in the graph that involves x needs to be updated
either by computing its post-condition w.r.t to the assignment, if invertible or
renamed to a fresh set variable X0 for a destructive assignment. All applications
invoke the base domain transfer function and thus rely on the base domain for
introduction (or not) of history variables. We illustrate this through a simple
example.

Example 12. Consider the QUIC graph G

X Y {y}
ν ≥ x− 2

and let B : y ≥ x. Consider the destructive assignment x := y + 1. The transfer
function yields the QUIC graph G′:

X Y {y}>

with the assertion B′ : x = y + 1. We compute a partial closure on the result,
which effectively pushes the constraint x = y + 1 on the edges of the graph G′.

Choose: The choose command selects an element from a set and assigns it to
a base domain variable. It takes quantified information from the set domain
and applies it to the resulting base domain variable. The strategy to handle
x := choose(T) for an abstract state (G,B) is the following:

1. Perform an inference operation on (G,B) giving (G∗, B∗).
2. Extract the base domain constraint Be from a self-loop on T :

G∗ = G′ ∧
⋂̇
T ⊆̇

⋃̇
T
∣∣∣
Be

.

3. Replace the bound variable ν in Be with a fresh base domain variable y
giving By. This process transfers all the facts that apply to elements in set
T and applies them to the variable y.

4. Compute the meet B′ = B∗ uBy. This transfers those facts about y to the
base domain.

5. Perform the destructive update x := y on (G∗, B′) to get the result of choose.

Projection: The projection of a base-domain variable x from (G,B) is performed
by (a) projecting x from B and (b) projecting x from each label in G. These are
performed by calling the projection defined in the base domain B̃.

The projection of a vertex T from the QUIC graph G first computes its partial
closure (G∗, B∗). Next, we remove all conjuncts involving the vertex T from G∗

to obtain the projection.

Join: Let (G1, B1) and (G2, B2) be the arguments for the join operation. We first
compute the partial closure of (G∗1, B∗1) of G1 and likewise the partial closure
(G∗2, B∗2) of (G2, B). The join (G,B) is then defined where B = B∗1 tB∗2 and G
is all conjuncts ⋂̇

T̄ i ⊆̇
⋃̇
T̄u
∣∣∣
B1tB2

where there exists some G′1 and G′2 such that

G∗1 = G′1 ∧
⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
B1

and G∗2 = G′2 ∧
⋂̇
T̄ i ⊆̇

⋃̇
T̄u
∣∣∣
B2

.

Widening: As such the QUIC graph domain is a product of a finite graph domain
and an abstract base domain. Widening is required iff the base domain does not
satisfy the ascending chain condition. The basic widening algorithm is precisely
the same as the join operation with the modification that the base domain
widening operation is applied for each QUIC edge instead of widening.

6 Evaluation

We now present a preliminary evaluation of our prototype analyzer. The QUIC
graphs domain introduced in this paper has two main aspects: (a) it enables
relational reasoning between sets to prove that one set (expression) is contained

in another; and (b) it allows us to qualify relations between sets using base
domain predicates, in effect allowing us to reason with set comprehension. The
evaluation in this section is intended to answer the following questions:

1. How much does each of the two ingredients (relations between sets + set
comprehensions) add to the ability of the analysis to prove properties of
commonly encountered use cases?

2. What is the added cost due to each of the two ingredients to the overall
domain?

To carry out the evaluation, we introduce two simplified versions of the QUIC
graphs domains namely the ‘set’ and ‘elem’ domains. (A) The ‘set’ domain allows
relations between sets but no comprehensions. This is a realization of a container-
as-a-whole approach. We create this domain by using the trivial two element
(⊥,>) base domain. (B) The ‘elem’ domain disallows relations between sets but
allows us to reason about the contents of the set using a summary variable. This
is a realization of a content-centric domain. To simulate this domain, we modify
the original QUIC graphs domain to just allow self loops on nodes as the only
possible edge. In effect, the predicate on such an edge must be true of every
element in the set. Furthermore, the process is exactly equivalent to introducing
a summary variable for each set variable and performing a base-domain analysis
using this summary variable.

Benchmarks: The next step is to choose a series of benchmarks that represent
common motifs for set (container) usage in dynamic languages. To evaluate
our approach we used two sets of benchmarks. We designed our analysis using
the first set of benchmarks, which exercise four commonly occurring operations
on containers ‘copy’, ‘filter’, ‘partition’ and ‘merge’. We then ran our analysis,
unmodified, on translated versions of all of the programs from the Python test
suite [24] for dictionaries and sets. We removed extraneous parts of these tests
and simply translated the core part of each program to an equivalent program in
our input language. Each test has a set of pre-defined assertions to be established
by our analyzer.

Results: Figure 1 summarizes the results of our analysis run on these benchmarks
on an Apple MacBook Pro, on a 2.2GHz Intel Core i7 with 8GB RAM running
Mac OS X 10.8.2. We now discuss the comparison of precision and running
time. The memory required by most analysis runs was under 150 MB. It is quite
clear from the results table that the combination of relational reasoning and
comprehension using base domain predicates is quite powerful. Whereas the
QUIC graphs domain can prove a majority of the properties, restricting it either
by removing the comprehensions (set) or removing the relations between sets
(elem) are both able to prove much fewer properties. Furthermore, every property
proved by these domains is also proved by the QUIC graphs domain.

The comparison of costs indicates that the QUIC graphs domain is 1.2×
slower than the set domain. However, it is 9× slower than the elem domain. The
difference in performance is entirely expected since the QUIC graphs domain has

Table 1. Results on a set of small benchmarks. Base Vars: # of base domain
(numerical) variables, Set Vars: # of set variables, Num Prp: # of assertions to
be proved, T: Time taken (seconds), #I: number of iterations of abstract interpreter
before convergence. – represents a time out (600 seconds)

Base Set Num # Proved Time Taken (Iterations)
ID Vars Vars Prp QG set elem QGT (#I) setT (#I) elemT (#I)
copy 1 6 2 2 2 0 0.2 (2) 0.2 (2) 0 (2)
filter 4 6 2 2 1 0 0.6 (3) 0.5 (3) 0.1 (2)
generic_max 3 8 6 3 0 0 0.9 (6) 0.6 (6) 0.2 (4)
merge 2 14 2 1 1 0 0.6 (4) 0.6 (4) 0.1 (4)
partition 4 8 4 4 2 0 1.1 (3) 0.9 (3) 0.2 (2)
b_filter 6 6 2 2 0 0 0.7 (3) 0.6 (3) 0.1 (2)
b_map 9 7 2 2 2 2 0.2 (5) 0.3 (5) 0.1 (4)
b_max_min 3 4 1 1 1 1 0.4 (3) 0.3 (3) 0.1 (2)
b_reduce 7 4 1 0 0 0 0.4 (3) 0.3 (3) 0.1 (2)
iter_ind 20 12 1 1 0 0 84.4 (39) 67.9 (39) 6.8 (14)
mul_ret 9 2 2 2 0 0 0.2 (6) 0.1 (6) 0.1 (6)
nest_dep 5 7 1 0 0 0 2.2 (12) 2.2 (12) 0.4 (6)
resize1 15 5 5 4 0 0 1.7 (18) 1.1 (18) 1 (18)
simp_cond 11 5 4 3 0 0 4.6 (12) 1.6 (12) 1.3 (12)
simp_nest 9 10 2 0 0 0 – (1399) – (1612) 0.7 (6)
srange 6 2 2 2 0 0 0.1 (6) 0.1 (6) 0.1 (6)
Total 37 29 9 3 98.3 (125) 77.3 (125) 11.4 (92)

to perform a lot more reasoning steps. We also find that one example times out
(after 600 seconds).

Limitations. While QUIC graphs are an effective abstract domain, but some
properties were not proven due to imprecision in the analysis. There are four
sources of this imprecision: (1) incomplete candidate generation, (2) imprecise
base domain, (3) no cardinality reasoning, and (4) syntactic restrictions within
QUIC graphs.

To reduce needless inference in many examples, we use candidate generation
(Sect. 4) to reduce the number of rule applications. Because candidate generation
reduces the potential edges that can result from a join, it can cause the join to
lose more information than is strictly necessary. This is this cause for many of
the failures in Table 1, including the failure to prove one of the properties in
‘merge’. Further work on candidate generation is quite important.

Because the base domain is also an abstract domain, it is imprecise and may
not be able to represent some necessary relationship. This is especially the case
when there is a transformation applied to all elements of a set. The base domain
must be able to represent that transformation that occurs to each element as a
relation. In this test suite there is only one test that exercises this ability and
the relations are all representable as linear relationships, so this imprecision does

not affect the results. However, if this were a problem, a new base domain could
be selected because QUIC graphs are agnostic to the base domain.

The QUIC graphs domain does not track the cardinality of sets. As has been
previously shown [18], cardinality can strengthen relationships, and therefore in
QUIC graphs, cardinality constraints would create additional closure rules. For
example, if for some set X we have that {1, 3, 7} ⊆ X and that |X| = 3, then
we can infer that X ⊆ {1, 3, 7}. It is possible that cardinality information could
provide sufficient information to prove properties that failed in this test suite, but
this information could likely be inferred in another way (such as better candidate
generation) because most sets in the test suite have unknown cardinality.

QUIC graphs are syntactically restricted to allow comprehensions only on
one side of a subset relationship. Reverse inclusions (Sect. 3) are not supported.
We hypothesize that the ability to know that an element exists in a set will be
beneficial when abstracting other containers using sets.

7 Related Work

There exists a large number of container analyses, mostly focused on arrays.
Although there are many different approaches, the problem is fundamentally the
same: partitioning an array in order to summarize different segments. Gopan et
al. [13], Halbwachs et al. [15] and Cousot et al. [7] use an abstract interpretation
framework with materialization and summarization. Therein, the partitions are
inferred from the structure of the program. Seghir et al. [25] perform this in the
context of predicate abstraction, similarly to abstract interpretation. Jhala et
al [16], McMillan [22], Kovacs et al. [17], and Dillig et al. [9, 10] use theorem
provers to perform this partitioning. Our approach does not use a partitioning
scheme except for the special case of loops that iterate over sets. Furthermore,
these approaches do not, in general, reason about comprehensions or relate the
contents of different arrays.

There are several alternative approaches to reasoning about container ma-
nipulations. Marron et al. [20, 21] used a shape analysis to emulate data storage
of containers. They used appropriate inductive predicates with carefully tuned,
simplified implementations of the containers to get an automatic analysis. Dillig
et al. [11] extended their previous work on arrays to more generic containers.
Their approach uses base domain predicates as constraints on the sets of keys for
maps. This is a highly tuned example of what we have been calling a content-
centric domain. Their approach does not directly infer relationships between
containers. However, they can indirectly infer relations through data invariants
that relate their contents. Finally, Pham et al. [23] introduced a relational domain
for sets. Their domain is similar to ours in that it is designed to directly represent
relations between sets. Their approach represents what we term an as-a-whole
approach for the most part. It does support a base domain of uninterpreted
functions and can be precise for a restricted class of programs. Because they
support only uninterpreted functions for the base domain, they have been able to
implement some under-approximations required to infer equalities with predicate

comprehensions, but this base domain does not support any manipulation or
reductions and thus is weaker than domains that we support.

The invariant generation procedure of [14] could infer many of the invariants
that we infer given a sufficiently expressive list of predicate templates. They select
from templates to use for quantified facts. As a result, their analysis requires
user input and guidance for success, but the approach does offer some additional
generality. Bouajjani et al. [3] present a similar, more automatic approach to
dealing with quantified invariants, by pre-selecting appropriate templates for
many applications. They apply their work to linked list structures and support
multiple bound variables to be able to maintain sortedness properties. Like the
work of [20], they use a shape analysis framework to approximate the shape and
data of lists, while maintaining quantified side conditions on an integer base
domain.

The QUIC graph data structure is similar to a formalization of constraint
graphs [2, 12] use to prove complexity of satisfaction of constraints [1]. While
the encoding is similar, there is no need for base domain labels since constraint
graphs are unable to place quantified restrictions on the contents of the sets they
constrain. In general, constraint graphs do represent sets, but they are intended
to use sets to analyze programs rather than analyzing set-manipulating programs.

The decision procedures community has largely solved this problem of re-
lational containers, but only for the problem of entailment checking. Decision
procedures do not perform invariant generation. Bradley et al. [4] demonstrated
decision procedures for arrays and other containers. The Z3 SMT solver imple-
ments an optimized version [8] of these decision procedures to speed up these
problems. Also, Lam et al. [19] and Kuncak [18] developed a system that si-
multaneously reasons about sets and their cardinalities relationally. Since these
tools solve the decision problem rather than the inference problem, they are
incomparable, however the optimizations used in [8] are similar to operations
that we define in our closure because they are Boolean algebra-like operations.

8 Conclusion

We have demonstrated a relational abstract domain for sets that combines a
content-centric analysis with a container-as-a-whole approach. This is achieved
through a new representation for set constraints called QUIC graphs that simplifies
the representation of set expressions and inclusion relations that use compre-
hensions. Our evaluation of this domain shows that a combined approach using
QUIC graphs is quite effective in practice. It outperforms weaker alternatives
such as a content-centric approach and a container-as-a-whole approach.

Going forward, we are developing tighter integration of our domain to analyze
a range of data structures in dynamic languages such as Python and JavaScript.
Our future work will complete the QUIC graph structure to encode reverse
inclusion relations (see Section 3), track set cardinalities more effectively and
enable the tracking of auxiliary data that can help extend this analysis to specific
structures such as arrays, lists and dictionaries.

Acknowledgments. We would like to thank Xavier Rival and the CUPLV
group for insightful discussions on this work, as well as the anonymous reviewers
for the helpful comments. This work is supported in part by the National Science
Foundation through grants CCF-1055066 and CCF-1218208.

References

[1] Alexander Aiken, Dexter Kozen, Moshe Y. Vardi, and Edward L. Wimmers. The
complexity of set constraints. In CSL, 1994.

[2] Alexander Aiken, Manuel Fähndrich, Jeffrey S. Foster, and Zhendong Su. A
toolkit for constructing type- and constraint-based program analyses. In Types in
Compilation (TIC). 1998.

[3] Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu.
Abstract domains for automated reasoning about list-manipulating programs with
infinite data. In VMCAI. 2012.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about
arrays? In VMCAI, 2006.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, 1977.

[6] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In POPL, 1979.

[7] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. In POPL, 2011.

[8] Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision pro-
cedures. In Conference on Formal Methods in Computer Aided Design (FMCAD),
2009.

[9] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: beyond strong vs. weak
updates. In ESOP, 2010.

[10] Isil Dillig, Thomas Dillig, and Alex Aiken. Symbolic heap abstraction with demand-
driven axiomatization of memory invariants. In OOPSLA, 2010.

[11] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using
containers. In POPL, 2011.

[12] Cormac Flanagan. Effective Static Debugging via Componential Set-Based Analysis.
PhD thesis, Rice University, 1997.

[13] Denis Gopan, Thomas Reps, and Mooly Sagiv. A framework for numeric analysis
of array operations. In POPL, 2005.

[14] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters
to quantified logical domains. In POPL, 2008.

[15] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in
simple programs. In PLDI, 2008.

[16] Ranjit Jhala and Kenneth McMillan. Array abstractions from proofs. In CAV.
2007.

[17] Laura Kovács and Andrei Voronkov. Finding loop invariants for programs over
arrays using a theorem prover. In FASE, 2009.

[18] Viktor Kuncak. Modular Data Structure Verification. PhD thesis, EECS Depart-
ment, Massachusetts Institute of Technology, 2007.

[19] Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: a tool for verifying data
structure consistency. In CC, 2005.

[20] Mark Marron, Darko Stefanovic, Manuel Hermenegildo, and Deepak Kapur. Heap
analysis in the presence of collection libraries. In PASTE, 2007.

[21] Mark Marron, Mario Méndez-Lojo, Manuel Hermenegildo, Darko Stefanovic, and
Deepak Kapur. Sharing analysis of arrays, collections, and recursive structures. In
PASTE, 2008.

[22] Kenneth McMillan. Quantified invariant generation using an interpolating satura-
tion prover. In TACAS, 2008.

[23] Tuan-Hung Pham, Minh-Thai Trinh, Anh-Hoang Truong, and Wei-Ngan Chin.
FixBag: A fixpoint calculator for quantified bag constraints. In CAV. 2011.

[24] Python. Python 2.7.3 test suite. http://www.python.org, 2012.
[25] Mohamed Nassim Seghir, Andreas Podelski, and Thomas Wies. Abstraction

refinement for quantified array assertions. In SAS, 2009.

http://www.python.org

	QUIC Graphs: Relational Invariant Generation for Containers

