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Abstract. In dynamic languages, objects are open—they support iteration over and
dynamic addition/deletion of their attributes. Open objects, because they have an un-
bounded number of attributes, are difficult to abstract without a priori knowledge of
all or nearly all of the attributes and thus pose a significant challenge for precise static
analysis. To address this challenge, we present the HOO (Heap with Open Objects)
abstraction that can precisely represent and infer properties about open-object-
manipulating programs without any knowledge of specific attributes. It achieves
this by building upon a relational abstract domain for sets that is used to reason about
partitions of object attributes. An implementation of the resulting static analysis
is used to verify specifications for dynamic language framework code that makes
extensive use of open objects, thus demonstrating the effectiveness of this approach.

1 Introduction

for(var p in s)
if(p in c) r[p] = "conflict";
else r[p] = s[p];

Fig. 1 – The essence of open object-
manipulating routines.

Static analysis of dynamic languages is chal-
lenging because objects in these languages
are open. Open objects have mutable and
iterable attributes (also called fields, proper-
ties, instance variables, etc.); developers can
programmatically add, remove, and modify
attributes of existing objects. Because of
their flexibility, open objects enable dynamic language developers to create frameworks
with object-manipulating routines [29] that decrease code size, increase code reuse, and
improve program flexibility and extensibility. In Fig. 1, we show JavaScript code that
conditionally adds attributes to the object rwith attributes from object s—code similar
to this snippet is repeated in various forms in, for instance, frameworks that implement
class and trait systems. Because specific attributes of the objects r, s, and c are unknown,
we cannot conclude exactly what the structure of the object r is at the end of this code.
However, it can be derived from the structure of the original r, s, and c that each attribute
(written f̂) in the set of all attributes of r (written attr(r)) can fall into one of three parts.
First, if f̂ is in both attr(s) and attr(c), the corresponding value is 'conflict'. Second, if f̂ is
in attr(s) but not in attr(c), the corresponding value is from s. Lastly, if f̂ is not in attr(s),
the value of attribute f̂ of object r is unchanged. In this paper, we argue that inferring these
partitions is a solution to what we call the open object abstraction problem.

The open object abstraction problem occurs when the attributes of objects cannot
be known statically. Unfortunately, the open object abstraction problem significantly



increases the difficulty of static analysis. Objects no longer have a fixed set of attributes
but instead an unbounded number of attributes. Thus, abstractions of objects must not
only abstract the values to which the attributes point but also the attributes themselves.
Such abstractions must potentially conflate many attributes into a single abstract attribute.
As we demonstrate in this paper, the open object abstraction problem precludes simple
adaptations of abstractions for closed-object languages like Java to dynamic languages.

This paper develops the HOO (Heap with Open Objects) abstract domain [7] that
does not require knowledge of specific attributes to be precise. It partitions attributes of
objects into sets of attributes. Then it relates those sets of attributes with sets of attributes
from other objects. Thus, it can represent complex relationships like those that form in
the aforementioned example through a relational abstraction for sets. For example, it can
automatically infer the three partitions in the attributes of object r in the previous example.

Unlike existing analyses that adapt closed-object abstractions [20, 30], the HOO
abstract domain is particularly suited for analyzing programs where significant pieces
of the program are unknown and thus many attributes of objects are unknown. Because
HOO partitions attributes on the fly and relates partitions to one another, it maintains
useful information even when unknown attributes are accessed and manipulated. Such
information is necessarily lost in closed-object adaptations and thus a domain like HOO is
a fundamental building block towards modular analysis of dynamic language programs.

In this paper we make the following contributions:
– We introduce HOO, an abstraction for objects that relates partitions of attributes

between multiple objects by building on a relational abstract domain for sets. Using
these relations, we directly abstract open objects instead of adapting existing object
abstractions that require knowledge of specific attributes. (Section 3).

– We introduce attribute materialization, an operation that extracts individual symbolic
attributes from attribute summaries, allowing strong updates of open objects. Using
attribute materialization, we derive transfer functions that use strong updates for
precisely reading from objects and writing to objects (Section 4).

– We develop algorithms for widening and inclusion checking that are used to automati-
cally infer loop invariants in open-object-manipulating programs. These algorithms
use iteration-progress sets to allow strong updates across loop iterations, thus inferring
partitions of object attributes (Section 5).

– We evaluate HOO by using inferred post-conditions for object-transforming functions
like those commonly found in JavaScript libraries to prove properties about the
structure of objects (Section 6).

2 Overview

In this section we demonstrate the features of the abstraction by analyzing the example
loop from the introduction. Fig. 2 shows key analysis states in the final iteration of abstract
interpretation after starting from an annotated pre-condition shown at 1 . In this iteration,
the analysis proves that the loop invariant is inductive.

Before executing the loop, 1 is the abstract state, where we show three separate
abstract objects at addresses â1, â3, and â5 (where ân represents a singleton set of addresses
and Ân represents a summary of addresses) that are pointed to by variables r, s, and



c (shown in dotted circles) respectively. The attributes of r, attr(r) are F̂r (where f̂n
represents a singleton set of attributes; F̂n represents any summary of attributes). Similarly,
attr(s) is F̂in]F̂out. Each attribute in attr(r) contains an object address from the summary
Â2 (shown with a double circle). Since many dynamic languages permit reading attributes
that do not exist, the partition noti maps to the value of all attributes not in the object. If
this partition does not exist, the object is incomplete and behaves similarly to a C# or a
Java object (Section 3). Boxed on the right are constraints on attribute partitions. These
constraints are represented by a relational abstraction for sets, such as QUIC graphs [10].

Appropriate partitioning of objects is vital for performing strong updates. To take
advantage of strong updates across loop iterations, 1 shows a special partitioning of
s. The partition F̂in is the set of all attributes that have not yet been visited by the loop,
whereas the partition F̂out is the set of all attributes that have already been visited by the
loop and thus is initially empty. On each iteration an element is removed from F̂in and
placed into F̂out, allowing relationships to represent not just the initial iteration of the loop,
but any iteration. We see these relationships in the loop invariant i .

The loop invariant i shows the three partitions of attr(r)mentioned in the introduction.
The partitions are constrained by F̂out, because the overwritten portion of attr(r) can only
be from the elements that have already been visited by the loop. Additionally the F̂ ′′out

partition is restricted to have no elements in common with F̂c. This corresponds to the
branch within the loop that determines whether 'conflict' ors[p] is written. This invariant
was inferred using abstract interpretation [7] by the HOO abstract domain.

Once in the body of the loop, the variablep is bound to a singleton set f̂ that is split from
F̂in. Depending on the value of f̂ , one of two cases occurs. In 2 we highlight the changes
using blue and dashed points-to arrows, showing that f̂ is contained in the properties of â5
F̂c. Storing 'conflict' into r[p] gives 3 by first removing f̂ from all partitions that make
up attr(r) and then adding a new partition f̂ and thus performing attribute materialization
of f̂ from the object summary. Because f̂ is now materialized, subsequent updates to f̂
will update the same f̂, rather than weakening the value abstraction that corresponds to
one of the larger partitions. Here, the abstract value that corresponds to f̂ is set to 'conflict'.

The second case writess[p] tor[p]when f̂ is not contained in F̂c. The starting state
4 is like 2 except that f̂ 6⊆ F̂c. The result similarly materializes f̂ in â1 before pointing

that partition to the abstract value Â4. Thus in both branches of the if, we perform strong
updates in the abstraction. Transfer functions and strong updates are detailed in Section 4.

After the if, we join the two abstract states 3 and 5 . In essence, the join process
(Section 5) merges partitions that have common properties. Here, f̂ is summarized into
F̂ ′out in 3 and F̂ ′′out in 5 . The three partitions of attr(r) thus arise from the part of attr(r)
that was left after materializing f̂ , and the two branches of the if, which is represented in
the set domain with a partial path condition. Once f̂ is summarized into F̂ ′out or F̂ ′′out, the
graphs match and thus the joined graph also matches as is shown in 6 . However, because
of the folding and the branch condition, the side constraints do not match and thus a join
is computed in the abstract domain for sets. Because the domain is sufficiently precise,
the set constraints shown in 6 are derived. Thus join is implemented by graph matching
intertwined with queries and join operations in the abstract domain for sets.

At the end of the loop body, it is necessary to summarize the iteration element f̂ into
the already-visited set F̂out. This allows the analysis to progress and it allows checking



1


r â1

F̂r
notiundef

Â2 s â3

F̂in

F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6 F̂in = F̂s∧F̂out = /0

for(var p in s)

i


r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out

noti undef

Â2 s â3

F̂in

F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6
F̂in]F̂out = F̂s
∧F̂ ′r= F̂r\F̂out

∧F̂ ′out]F̂ ′′out = F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c

{
if(p in c) {

2


r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out

noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in] f̂]F̂out = F̂s
∧F̂ ′r= F̂r\F̂out

∧F̂ ′out]F̂ ′′out = F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂⊆ F̂c

r[p] = "conflict";
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r â1

F̂ ′r
F̂ ′out 'conflict'

f̂ 'conflict'
F̂ ′′out

noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in] f̂]F̂out = F̂s
∧F̂ ′r= F̂r\(F̂out] f̂)
∧F̂ ′out]F̂ ′′out = F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂⊆ F̂c

} else {

4


r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out

noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in] f̂]F̂out = F̂s
∧F̂ ′r= F̂r\F̂out

∧F̂ ′out]F̂ ′′out = F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂∩F̂c= /0

r[p] = s[p];
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r â1

F̂ ′r
F̂ ′out 'conflict'

f̂
F̂ ′′out

noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in] f̂]F̂out = F̂s
∧F̂ ′r= F̂r\(F̂out] f̂)
∧F̂ ′out]F̂ ′′out = F̂out

∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c
∧ f̂∩F̂c= /0

}

6


r â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out

noti undef

Â2 s â3

F̂in

f̂
F̂out

notiundef

Â4 c â5

F̂c
notiundef

Â6

p f̂

F̂in] f̂]F̂out = F̂s
∧F̂ ′r= F̂r\(F̂out] f̂)
∧F̂ ′out]F̂ ′′out = F̂out] f̂
∧F̂ ′′out∩F̂c= /0
∧F̂ ′out⊆ F̂c

}

Fig. 2 – Final iteration of analysis of the example loop from the Introduction. The loop
invariant i shows the three inferred partitions of attr(r), and the set constraints (on the
right) relate those three partitions to the partitions originally found in the three objects.



if the resulting state is contained in the loop invariant. The summarization process is a
rewrite process where the partition f̂ in â3 is merged with the partition F̂out and F̂out] f̂
is rewritten with F̂out in the side constraints. The containment checking is similar to the
join algorithm and proceeds by intertwined graph matching and set domain containment
queries. In this case, the result of summarization matches the loop invariant i and thus
the iteration process is complete and the loop invariant is inductive.

To find the loop invariant, HOO constructed new partitions (Section 3) through attribute
materialization and updated them with strong updates (Section 4). Then it related those
partitions with the iteration-progress variable F̂out by summarization (Section 5). As a
result, HOO determined it did not need more partitions to express the loop invariant and
that the result object rwas related to the source object s through three partitions of attr(r).

3 Abstraction of Dynamic Language Heaps

In this section, we define the HOO abstraction. The HOO abstraction abstracts concrete
dynamic language program states. A concrete program state σ has the following definition:

σ :C=Addr fin→OMap×Value⊥ o :OMap=Attr fin→Value

Concrete states are finite maps from heap addresses (Addr) to concrete objects. A concrete
object consists of two parts. The first part is the object mapping (OMap) that is a finite
map from attributes (Attr) to values (Value). The second part is an optional value that is
returned when an undefined attribute is read.

The HOO abstraction represents sets of concrete states with a finite disjunction of
abstract states, that each consist of a heap graph and set constraints represented using an
abstract domain for sets. Formally the HOO abstraction is the following:

Definition 1 (Abstract State). An abstract state Σ ∈ Ĉ is a pair of an abstract heap graph
Ĥ and an element of an abstract domain for sets Ŝ. The syntax of abstract heap graphs is

Ĥ ::=EMP | TRUE | Ĥ∗Ĥ | Â ·F̂ 7→V̂ | Â ·noti 7→V̂

where symbols Â, F̂, and V̂ represent sets of addresses, attributes, and values respectively.
We also use symbols â, f̂ , and v̂ to represent singleton sets of address, attributes, and
values. The symbols for addresses and attributes are also symbols for values:

Â∈ Âddr F̂∈ Âttr V̂∈ V̂alue= Âddr∪Âttr∪···

The resulting abstract domain is a reduced product [8] between a heap abstract domain
element Ĥ and a set abstract domain element Ŝ. The set domain is used to represent
relationships between sets of attributes of objects. The information from the set domain
affects points-to facts Â ·F̂ 7→V̂ by constraining the sets of addresses Â, attributes F̂, and
values V̂. Therefore the meaning of a HOO abstract state is closely tied to the meaning of
set constraints. Since HOO is parametric with respect to the abstract domain for sets, its
concretization is given in terms of a concretization for the set domain γ(Ŝ):

γ(Ĥ,Ŝ) def
=
{
(η ,σ)

∣∣(η ,σ)∈γ(Ĥ)∧η∈γ(Ŝ)
}

where η :E= V̂alue⇀℘(Value)



The η is a valuation function that maps value symbols (including address and attribute
symbols) to sets of concrete values. The set domain restricts the η function, which in turn
restricts the concrete state σ through the concretization of the heap. If is a placeholder
for unused existentially quantified variables, the concretization of the heap is defined as
follows:

γ(EMP)
def
={η ,σ |Dom(σ)= /0}

γ(TRUE)
def
=E×C

γ(Â ·F̂ 7→V̂) def
=
{

η ,σ
∣∣∀a∈η(Â), f ∈η(F̂).∃v∈η(V̂),o.(o, )=σ(a)∧v=o( f )

}
γ(Â ·noti 7→V̂) def

=
{

η ,σ
∣∣∀a∈η(Â).∃v∈η(V̂).( ,v)=σ(a)

}
γ(Ĥ1∗Ĥ2)

def
=
{

η ,σ
∣∣∃σ1,σ2.(η ,σ1)∈γ(Ĥ1)∧(η ,σ2)∈γ(Ĥ2)∧σ =σ1⊗σ2

}
The concretization of a points-to fact can represent part of many objects. The base

addresses of the objects are retrieved from the valuation η(Â), but only the attributes
retrieved from the valuation η(F̂) are considered by this points-to fact. HOO uses an
attribute splitting model similar to JStar [26] or Xisa [4], thus not every attribute of every
object in η(Â) is represented in η(F̂). Because each of the symbols Â is a set, each abstract
address may be a summary, but if the set domain can represent singletons [10, 27], these
need not always be summaries.

The points-to fact for the default value Â ·noti 7→V̂ restricts the default value for each
object in η(Â). These default value points-to facts serve a dual purpose, however. Because
of the field splitting model, not all objects must have all of their attributes in a formula. The
presence of a default points-to fact indicates that all of the objects of η(Â) are complete;
they have all of their attributes represented in the formula. Incomplete objects may not
have all of their attributes represented in the formula and thus abstract transfer functions
may only access attributes that must be in the known parts of the object (see Section 4).

The separating conjunction has mostly the standard semantics [28]. Because objects
can be split and the attributes are not fixed, we must define the composition ⊗ of two
separate concrete states differently:

σ1⊗σ2=λa.



σ1(a) a∈Dom(σ1)\Dom(σ2)

σ2(a) a∈Dom(σ2)\Dom(σ1)(
o1⊕o2,

d1�d2

) (o1,d1)=σ1(a)
(o2,d2)=σ2(a)
a∈Dom(σ1)∩Dom(σ2)

o1⊕o2=λ s.

{
o1( f ) f ∈Dom(o1)\Dom(o2)

o2( f ) f ∈Dom(o2)\Dom(o1)

Separate objects are composed trivially, but objects that have been split have their object
maps composed using object map composition⊕. This is only defined if there are disjoint
attributes in each partial object map. Additionally, default values are composed with �
which yields the non-bottom value if possible and is undefined for two non-bottom values.

Graphical Notation In most of this paper, we use a graphical notation to help ease
understanding. This notation can be translated to the formalization given in this section. In



the graphical notation, a single circle represents an object address. If that circle is labeled
with a ân, f̂n, or v̂n the object is a singleton address, attribute or value respectively and thus
corresponds to a single concrete value. If that circle is labeled with a Ân, F̂n, or V̂n and has
a double border, the object is a summary. If that circle is labeled with a program variable,
it represents a singleton stack location. Objects with fields are represented using the table
notation, where each row corresponds to a points-to fact starting from a base address from
the set Ân.

Example 1 (Graphical Notation Equivalence). The following graphical notation and
logical notation are equivalent. We use the unit attribute () to represent the points-to
relationship from the stack variable r to the singleton object â1.

r â1

F̂r
noti

â2

â3

equivalent to
r·{()} 7→ â1
∗â1 ·F̂r 7→ â2
∗â1 ·noti 7→ â3

4 Materialization and Transfer Functions

To precisely analyze programs that manipulate values in summaries, it is necessary to
materialize individual elements from the summaries. Materialization occurs in execution
of transfer functions in the language of commands c that represents the core behaviors for
open-object manipulation in dynamic languages:

c ::= let x=attr(x1) | let x=choose(x1) set operations| let x=x1∪x2 | let x=x1\x2
| let x=x1[x2] | x1[x2] :=x3 | for x1 in x2 do c object operations
| let x=new{} | c1;c2 |while e do c | let x=e standard operations

This section is concerned with load and store object operations because these operations
require attribute materialization, which is mandatory for inferring precise relationships
between objects with unknown attributes. Aside from for-in, which is defined in the
next section, other operations, including choose(x1), which selects a singleton set from a
set and attr(x1), which gets the union of all attributes of an object, are straightforward and
thus defined in the Appendix.

The concrete semantics of load let x=x1[x2] and store x1[x2] :=x3 are straightforward.
They look up the object x1, then try to find the given attribute x2. Load binds to x the
value that corresponds to the attribute if it is found, otherwise it binds the default value
for the object. Store removes the given attribute if it is found and adds a new attribute that
corresponds to the right-hand side x3.

To perform loads and stores on abstract objects the abstract transformers for load and
store must determine how to manipulate and utilize the partitions on the accessed object.
The process of transforming an object so that it has precisely the partitions necessary for
performing a particular load or store is attribute materialization.

Concrete and abstract transfer functions are defined over the command language c.
Concrete transformers JcK : C→C transition a single concrete state to a single concrete
state. Abstract transformers ĴcK : Ĉ→℘(Ĉ) (shown as Hoare triples [19] with the graphical



notation), however, transition a single abstract state to a set of abstract states representing a
disjunction. This disjunction capability is used in transfer functions that perform case splits,
such as the load transfer function. In the implementation of HOO, we use a disjunctive
domain combinator to manage these sets.

It is possible to implement transfer functions that manipulate complete, incomplete,
summary, and singleton objects. Here we define the store and load transfer functions for
complete singleton objects. For incomplete objects, there are separate transfer functions:
before a materialization can occur, it must be proven that the attribute already exists in
the object. This ensures that attributes that are defined in the missing part of the object
cannot be read or overwritten by any operations. When operating on a summary object, a
singleton must first be materialized. This materialization is trivially defined through case
splits that result in finite disjunctions.

Attribute Materialization for Store: Attribute materialization for store operations is
simple. Since the value of the particular attribute is about to be overwritten, there is no
need to preserve the original value. The implementation of store is the following:

a b

x1 â1

F̂1
...

...

F̂n

noti

v̂1
...

v̂n

v̂d

x3 v̂

x2 f̂

Ŝ x1[x2] :=x3
x1 â1

F̂ ′1
...

...

F̂ ′n
f̂

noti

v̂1
...

v̂n

v̂d
x3 v̂

x2 f̂

Ŝ
∧F̂ ′1 = F̂1\ f̂

...

∧F̂ ′n = F̂n\ f̂

Store looks up the corresponding objects to x1, x2, and x3 in a , which in this case are
â1, f̂ , and v̂ respectively. Attribute materialization then iterates through each partition in â1
and reconstructs the partition by removing f̂ from the partition. If f̂ was not already present
in the partition, this represents no change, otherwise it explicitly removes f̂ . Finally, after
all of the existing partitions have been reconstructed, a new partition for f̂ is created and it
is pointed to the stored value v̂ giving b . By performing this attribute materialization, we
have guaranteed that subsequent reads of the same property f̂ , even if we do not know its
concrete value, will be directed to f̂ , and thus store performs strong updates.

Attribute Materialization for Load: Attribute materialization for load is similar to
store. The key difference is that there is a possible result for each partition of the read
object. The HOO abstract domain uses a finite disjunction to represent the result of this
case split:

a b c d

x1 â1

F̂1
...

...

F̂n

noti

v̂1
...

v̂n

v̂d

x2 f̂

Ŝ

let x=x1[x2]

x1 â1

F̂ ′1
f̂

F̂2
...

...

F̂n

noti

v̂1

v̂2
...

v̂n

v̂d

x2 f̂

x

Ŝ∧F̂1 = F̂ ′1] f̂

···
x1 â1

F̂1
...

...

F̂n-1
F̂ ′n
f̂

noti

v̂1
...

v̂n-1

v̂n

v̂d

x2 f̂

x

Ŝ∧F̂n = F̂ ′n] f̂

x1 â1

F̂1
...

...

F̂n

noti

v̂1
...

v̂n

v̂d

x2 f̂

x

Ŝ∧
f̂ 6⊆ F̂1∪···∪F̂n



A load operation must determine which, if any, of the partitions the attribute f̂ is in. In the
worst case, it could be in any of the partitions and therefore a result must be considered
for each case. In each non-noti case, f̂ is constrained to be in that particular partition and
therefore in no other partition. If this is inconsistent under the current analysis state, the
abstract state will become bottom for that case and it can be dropped. The noti partition,
which implicitly represents all attributes not currently in the object, must be considered as
a possible source for materialization if there is a chance the attribute does not already exist
in the object. Such a materialization does not explicitly cause any repartitioning because
noti still represents all of the not present attributes (which now does not include f̂).

If the values that are being loaded (in this case v̂1,···,v̂n,v̂d) are not singleton values, the
load operation must also materialize one value from that summary. When materializing
from a summary object, additional partitions can be generated. For each object that has
a partition that maps to the summary, that partition must be split into two parts: one that
maps to a new summary and one that maps to the singleton that was materialized. While it
is possible that these case splits introduced by load could become prohibitive, we have not
found this to be a significant problem. Typically unknown attributes are not completely
unknown and thus limit case splits or the number of partitions for an object is sufficiently
small that these case splits do cause significant problems. If the precision provided by the
case splits is unneeded, the resulting states can be joined to eliminate cases.

Example 2 (Store with summary values). When loading from an attribute f̂ that is con-
tained in a partition F̂ of an object â that maps to a summary V̂, additional partitions are
produced. The result contains three partitions instead of two. Some attributes from F̂ map
to V̂ ′ and some map to v̂. Therefore, while the analysis knows that f̂ maps to v̂ because
that is why it chose to materialize v̂, it does not know that other attributes of F̂ do not also
map to v̂. Therefore, it splits the remainder of F̂ into two partitions: one F̂ ′ that maps to the
remainder of the values V̂ ′ and another F̂ ′′ that maps to the materialized value v̂.

a b

x â1

F̂
V̂

f̂⊆ F̂

Materialize f̂ from F̂ x â1

F̂ ′

F̂ ′′

f̂

V̂ ′

v̂

F̂= F̂ ′]F̂ ′′] f̂
∧V̂=V̂ ′]v̂

Theorem 1 (Soundness of transfer functions). Transfer functions are sound because
for any command c, the following property holds:

∀(Ĥ,Ŝ)∈ Ĉ,σ ∈γ(Ĥ,Ŝ),Σ̄⊆ Ĉ.

Σ̄ = ĴcK(Ĥ,Ŝ)⇒∃(Ĥ ′,Ŝ′)∈ Σ̄ .JcKσ ∈γ(Ĥ ′,Ŝ′)

5 Automatic Invariant Inference

In this section we give the join, widening, and inclusion check algorithms that are required
for automatically and soundly generating program invariants. Here the focus is inferring
loop invariants for for-in loops — the primary kind of loop for object-manipulation.
The analysis of for-in loops first translates these loops intowhile loops. This allows
HOO to follow the standard abstract interpretation procedure for loops, while introducing
iteration-progress variables to aid the analysis in inferring precise loop invariants.



for x1 in x2 do c def
=

let s=new{};
s['in'] :=attr(x2);
s['out'] := /0;
while s['in'] 6= /0 do

let x1=choose(s['in']);
s['in'] :=s['in']\{x1}
c;
s['out']=s['out']∪{x1}

These iteration-progress variables are introduced in
the translation process shown in the inset figure. For the
object being iterated over x2, the s['in'] variable keeps
track of attributes that have not yet been visited by the
loop, while s['out'] keeps track of attributes that have
already been visited by the loop. To keep these variables
up to date, the translation employs the set manipulating
commands introduced in Section 4.

Once translated, HOO takes advantage of s['in'] and
s['out'] to represent relations between partitions of at-
tributes. Adding these ghost variables, allows partitions to be equal to a function of the
already visited portion attr(x2). On the exit of the loop, s['in'] is the empty set and s['out']
is attr(x2), so partitions related to s['out'] are now related to attr(x2).

These iteration-progress variables are essential for performing strong updates. When
analyzing an iteration of a loop, partitions that arise from attribute materialization arise
simultaneously with partitions that arise in iteration-progress variables. Thus these par-
titions become related and even when partitions from attribute materialization must be
summarized, the relationship with the iteration progress variable is maintained. The
summarization process occurs as part of join and widening.

Join Algorithm: The join algorithm takes two abstract states Ĥ1,Ŝ1 and Ĥ2,Ŝ2 and
computes an overapproximation of all program states described by each of these abstract
states. When joining abstractions of memory, the algorithm must match objects in Ĥ1 and
objects in Ĥ2 to objects in a resulting abstract memory Ĥ3. This matching of objects can
be described by two mapping functions M1 and M2, where M1 : Âddr1

fin→ Âddr3 maps
symbols from Ĥ1 to symbols from Ĥ3 and M2 : Âddr2

fin→ Âddr3 maps symbols from Ĥ2
to symbols from Ĥ3. However, because HOO abstracts open objects, the join algorithm
must match partitions of objects as well. This matching is represented with a relation
PJ⊆℘(Âttr1)×℘(Âttr2)×Âttr3 that relates sets of partitions from objects in Ĥ1 and Ĥ2
to partitions in Ĥ3. Because partitions can be split and because new, empty partitions can
be created, join can produce an unbounded number of partitions.

The fundamental challenge for the HOO abstraction’s join algorithm is computing
these symbol matchings M1, M2, and PJ . To construct the matchings, the join algorithm
begins at the symbolic addresses of stack allocated variables. It adds equivalent variables
from the three graphs to M1 and M2, then it begins an iterative process. Starting from
a matching that already exists in M1 and M2, it derives additional matchings that are
potential consequences. To derive these additional matchings, a template system is used.
The templates are shown in Table 1. These templates consume corresponding parts of
a memory abstraction, producing a resultant memory abstraction that holds under the
matchings. This iterative process is applied until no more templates can be applied. Any
remaining heap at this point results in TRUE being added to the result. The result of join
is complete matchings M1, M2, and PJ , as well as, a memory abstraction Ĥ3. To get the
resulting set abstraction Ŝ3, the sets are joined under the same matchings, where multiple
matchings are interpreted as a union.

There are three templates described in Table 1. The first trivially joins any two empty
objects into an empty object. The default values are subsequently matched. The second



Table 1 – Join templates match objects in two abstract heaps, producing a third heap that
overapproximates both. Matchings M1, M2, PJ are generated on the fly and used in joining
the set domain after the heaps are joined.

Prerequisites Ĥ1, Ŝ1 t Ĥ2, Ŝ2 ; Result

M1(Â1)= Â3
M2(Â2)= Â3

Â1

noti V̂1
t Â2

noti V̂2
; Â3

noti V̂3

M1(V̂1)=V̂3
M2(V̂2)=V̂3

M1(Â1)= Â3
M2(Â2)= Â3

Â1

F̂1 V̂1’
noti V̂1

t
Â2

F̂2 V̂2’
noti V̂2

;
Â3

F̂3 V̂3’
noti V̂3

M1(V̂1)=V̂3, M2(V̂2)=V̂3
M1(V̂ ′1)=V̂ ′3, M2(V̂ ′2)=V̂ ′3
({F̂1},{F̂2},F̂3)∈PJ

M1(Â1)= Â3
M2(Â2)= Â3
remainder of
object matches

Â1
...

...

F̂ i
1 V̂ i

1
...

...

F̂m
1 V̂ m

1
...

...

t

Â2
...

...

F̂ j
2 V̂ j

2
...

...

F̂n
2 V̂ n

2
...

...

;

Â3
...

...

F̂k
3 V̂ k

3
...

...

({F̂ i
1,···,F̂

m
1 },{F̂

j
2 ,···F̂

n
2 },F̂

k
3 )∈PJ

M1(V̂ i
1)=V̂ k

3 , M2(V̂
j

2 )=V̂ k
3

...
...

M1(V̂ m
1 )=V̂ k

3 , M2(V̂ n
2 )=V̂ k

3

template joins any two objects that have only one partition. The values from that partition
are added to the mapping as well as the default values. The last template is parametric. If
some number of partitions can be matched with some number of partitions then those can
all be merged into a single partition in the result. This template requires applying other
rules to complete the joining of the objects. If it is unknown how to match partitions for all
of an object, this template allows matching part of the object. If the result is that remaining
partitions are single partitions, even if there is no natural way to match them, they will be
matched by applying template two.

Example 3 (Joining objects). Here we join â1 objects from the overview example at
program points 3 and 5 to get the result shown at 6 . To compute the join we construct
matchings M1, M2, and PJ . Initially M1 = [â1 7→ â1], M2 = [â1 7→ â1], and PJ = /0. If we
were to match F̂ ′out with F̂ ′out or F̂ ′′out with F̂ ′′out, we would get an imprecise join because
we would be forced to match f̂ with itself even though it has two values that should not
be joined. Instead, we apply the third template to merge partitions with like values, thus
merging f̂ with F̂ ′out in 3 and with F̂ ′′out in 5 . Since the only remaining partition is F̂ ′r, we
match F̂ ′r and F̂ ′r giving the following matchings and join result:

M1=[â1 7→ â1,â2 7→ â2,â4 7→ â4]

M2=[â1 7→ â1,â2 7→ â2,â4 7→ â4]

PJ ={({F̂ ′r},{F̂ ′r},F̂ ′r), ({F̂ ′out, f̂},{F̂ ′out},F̂ ′out), ({F̂ ′′out},{F̂ ′′out, f̂},F̂ ′′out)}

â1

F̂ ′r
F̂ ′out 'conflict'

f̂ 'conflict'
F̂ ′′out

noti undef

â2

â4

t

â1

F̂ ′r
F̂ ′out 'conflict'

f̂
F̂ ′′out

noti undef

â2

â4

;

â1

F̂ ′r
F̂ ′out 'conflict'
F̂ ′′out

noti undef

â2

â4

Widening algorithm: In HOO, the join and widening algorithms are nearly identical.
However, unlike join, widening must select matchings that ensure convergence of the



analysis, by guaranteeing that the number of partitions does not grow unboundedly
and that the arrangement of the partitions is fixed (i.e. there is no oscillation in which
partitions are matched during widening). While there are many possible approaches that
meet these criteria, we utilize allocation site information to resolve decisions during the
matching process. Only objects from the same allocation site may be matched, which
causes only attribute sets whose corresponding values are from the same allocation site to
be matched. To ensure convergence, after some number of iterations, all objects from the
same allocation site can be forced to be matched. This bounds the partitions per abstract
object to one per allocation site and bounds the number of abstract objects to one per
allocation site, so as long as the underlying set domain converges on an abstraction for
each partition, the analysis will converge.

Inclusion Check Algorithm: Inclusion checking determines if an abstract state is
already described by another abstract state. The process for deciding if an inclusion holds
is similar to the join processes. If M,PI ` Ĥa,Ŝa v Ĥb,Ŝb, all concrete states described
by Ĥa,Ŝa must be contained in the set of all concrete states described by Ĥb,Ŝb. It works
in a fashion similar to join by constructing matchings M and PI from symbols in Ĥa,Ŝa
to symbols in Ĥb, Ŝb. It employs the same methodology as join. Objects are matched,
one-by-one, until no more matches can be made. This matching builds up the mapping M
that is then used for an inclusion check in the set domain. If the mapping was successfully
constructed and the inclusion check holds in the set domain, the inclusion check holds on
the HOO domain. The templates for augmenting the mapping are essentially the same as
those for join shown in Table 1, except with only M1 and with PI only using the first and
third components and where Ĥ2,Ŝ2 is ignored with Ĥ1,Ŝ1 corresponding to Ĥa,Ŝa and the
result corresponding to Ĥb,Ŝb.

Theorem 2 (Join Soundness). Join is sound under matchings M1, M2, PJ because

If M1,M2,PJ ` Ĥ1,Ŝ1tĤ2,Ŝ2 ; Ĥ3,Ŝ3 then

∀σ ,η .(η ,σ)∈γ(Ĥ1,Ŝ1)∨(η ,σ)∈γ(Ĥ2,Ŝ2)⇒∃η3.(η3,σ)∈γ(Ĥ3,Ŝ3)

The purpose of the soundness theorem is to state that not only does every single
concrete state that is in the concretization of both (Ĥ1, Ŝ1) and (Ĥ2, Ŝ2), occur in the
concretization of (Ĥ3,Ŝ3), but also there is a relationship between the valuations η and η3.
The specific construction of this relationship is not necessary for soundness, but it does
matter for the actual proof of soundness. The relationship is restricted by the matchings M1,
M2, and PJ and is given in the Appendix. A similar theorem exists for inclusion checking
that is also given in the Appendix.

We do not state properties other than soundness due to the dependence of HOO’s
behavior on its instantiation. Because of the non-trivial interaction between the set domain
and HOO, properties of HOO are affected by properties of the set domain. More precise
set domain operations typically yield more precision in HOO. Additionally, the choice of
heuristics for template application can affect the results of join, widening, and inclusion
check, thus leading to a complex dependency between precision and heuristics. While this
dependence can affect many properties, it does not affect soundness.



Table 2 – Analysis results of diagnostic benchmarks. Time compare analysis time exclud-
ing JVM startup time. Memory properties compares TAJS and HOO in verifying pointer
properties. Object properties compares TAJS and HOO in verifying object structure
properties. The # Props columns are the total number of properties of that kind.

Time (s) Memory Properties Object Properties

Program TAJS HOO TAJS HOO # Props TAJS HOO # Props

static 0.06 0.09 1 1 1 3 3 3
copy 0.13 0.02 1 1 1 0 3 3
filter 0.40 0.10 0 0 0 0 6 6
compose 0.71 0.54 0 0 0 0 7 7
merge 0.19 0.06 2 2 2 0 5 5

6 Precision Evaluation

In this section we test several hypotheses: first, that HOO is fast enough to be useful; second,
that HOO is at least as precise as other open-object abstractions when objects have un-
known attributes; and third, that HOO infers partitions and relations between partitions of
unknown attributes precisely enough to verify properties of intricate object-manipulating
programs. To investigate these hypotheses, we created a prototype implementation in
OCaml and ran it on a number of small diagnostic benchmarks, each of which consists
of one or more loops that manipulate open objects. These benchmarks are drawn from
real JavaScript frameworks such as JQuery, Prototype.js, and Traits.js3. We chose them
to test commonly occurring idioms that manipulate open objects in dynamic languages.
To have properties to verify, we developed partial correctness specifications for each of
the benchmarks. We then split the post-conditions of the specifications into a number of
properties to verify that belong in one of two categories: memory properties assert facts
about pointers (e.g., r 6=s), and object properties assert facts about the structure of objects
(e.g., if the object at â1 has attribute f̂, then object at â2 also has attribute f̂). The full
benchmarks and corresponding properties are shown in the Appendix.

We use these benchmarks to compare HOO with TAJS [20], which is currently the
most precise (for open objects) JavaScript analyzer. Because TAJS is a whole-program
analysis, it is not intended to verify partial correctness specifications and consequently,
it adapts a traditional field-sensitive object representation for open objects. However, it
employs several features to improve precision when unknown attribute are encountered
during analysis: it implements a recency abstraction [1] to allow strong updates on straight-
line code, and it implements correlation tracking [30] to allow statically known attributes
to be iteratively copied using for-in loops.

In the results in Table 2, we find that TAJS and HOO are able to prove the same memory
properties. The diagnostic benchmarks are not designed to exercise intricate memory
structures, so all properties are provable with an allocation site abstraction. Because both
TAJS and HOO use allocation site information, both prove all memory properties.

3 http://jquery.com, http://prototypejs.org, and http://traitsjs.org



For object properties, HOO is always at least as precise as TAJS, and significantly
more so when unknown attributes are involved. The static benchmark is designed to
simulate the “best-case scenario” for whole program analyses: it supplies all attributes to
objects before iterating over them. Here, TAJS relies on correlation tracking to prove all
properties. HOO can also prove all of these properties. It infers a separate partition for each
statically known attribute, effectively making it equivalent to TAJS’s object abstraction.

Our other benchmarks iterate over objects where the attributes are unknown. Here,
HOO proves all properties, while TAJS fails to prove any. TAJS’s imprecision is unsur-
prising because correlation tracking does not work with unknown attributes and recency
abstraction does not enable strong updates in loops. HOO, on the other hand, succeeds
because it infers partitions of object attributes and relates those partitions to other parti-
tions. In the copy benchmark, attributes and values are copied one attribute at a time to a
new object. HOO infers that after the iteration is complete, the attributes of both objects
are equal. HOO can also verify the filter benchmark, which is the example presented
throughout this paper that requires conditional and partial overwriting of objects. Addi-
tionally, HOO continues to be precise even when complex compositions are involved, as
in the compose and merge benchmarks, which perform parallel and serial composition
of objects. For these benchmarks HOO infers relationships between multiple objects and
sequentially updates objects through multiple for-in loops.

On these benchmarks, HOO is often faster than TAJS, but this is likely due to TAJS’s
full support for JavaScript and the DOM and thus performance is really incomparable.
Actually, HOO’s performance is highly dependent on the efficiency of the underlying set
domain due to the large number of set domain operations that HOO uses. However, despite
not having a heavily optimized set domain, HOO analyzes these benchmarks quickly.

This evaluation demonstrates that HOO is effective at representing and verifying
properties of open objects, both with statically known attributes and with entirely unknown
attributes. Additionally it shows that HOO provides significant precision improvement
over existing open-object abstractions when attributes are unknown and that HOO does
not take a significant amount of time to verify complex properties.

7 Related Work

Analyses for dynamic languages: Because one of the main features of dynamic languages
is open objects, all analyses for dynamic languages must handle open objects to a degree.
As opposed to directly abstracting open objects, TAJS [20, 21], WALA [30], and JSAI [18,
23] extend standard field-sensitive analyses to JavaScript by adding a summary field for
all unknown attributes. They employ clever interprocedural analysis tricks to propagate
statically known object attributes through loops and across function call boundaries.
Consequently, with the whole program, they can often precisely verify properties of
open-object manipulating programs. Without the whole program, these techniques lose
precision because they conflate all unknown object attributes into a single summary field
and weakly update it through loops.

Analyses for containers: Because objects in dynamic languages behave similarly to
containers, it is possible that a container analysis could be adapted to this task. Powerful
container analyses such as [13] and [16] can represent and infer arbitrary partitions



of containers. This is similar to HOO except that they do not use set abstractions to
represent the partitions, but instead use SMT formulas and quantifier templates. For some
applications these are excellent choices, but for dynamic languages where the key type
of the containers is nearly always strings, this suffers. HOO can use abstract domains for
sets [10, 27] and thus if these domains are parametric over their value types, HOO can
support nearly any key-type abstraction.

Arrays and lists are restricted forms of containers on which there has been a significant
amount of work [2, 9, 12, 15, 17, 22, 24]. The primary difference between arrays and more
general containers and open objects is that arrays typically contain related values next to
one another. Partitions of arrays are implicitly ordered and because array keys typically do
not have gaps, partitions are defined using expressions that identify partition boundaries.
Because open objects have gaps and are unordered, array analyses are not applicable.
Regardless, array abstraction inspires the partitioning of open objects that we use.

Decision procedures: In addition there are analyses that do not handle loops without
annotations for both dynamic languages and containers. DJS [5, 6] is a flow-sensitive
dependent type system for JavaScript. It can infer intermediate states in straight-line
code, but it requires annotations for loops and functions. Similarly JuS [14] supports
straight-line code for JavaScript. Jahob and its brethren [25] use a battery of different
decision procedures to analyze containers and the heap together for Java programs. Finally,
array decision procedures [3, 11] can be adapted to containers, but all of these approaches
require significant annotation of non-trivial loop invariants to be effective on open-object-
manipulating programs.

8 Conclusion and Future Work

In an effort to verify properties of incomplete, open-object-manipulating programs, we
created the HOO abstract domain. It is capable of verifying complex object manipulations
even when object attributes are completely unknown. While it is effective today, we want
to extend it to allow inferring relationships between attributes and their corresponding
values. Such relationships enable determining precisely which value in a summary is being
materialized and proving properties about specific values, even when they are included
in a summary. We plan to pursue such an extension as we believe that it could enable
verification of programs that use open objects not only as objects, but also as containers.
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30. M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation tracking for points-to
analysis of JavaScript. In ECOOP, pages 435–458, 2012.



A Formal Details

In this section we give more details on the formalization of HOO. The various parts include
the concrete and abstract semantics of various commands. To define the abstract semantics,
we give a definition of materialization. Finally we give the full definitions of join and
inclusion soundness.

A.1 Concrete Semantics

In this section we give the concrete transfer functions for object and set manipulating
commands. First we define the read function, which reads an attribute from an object. It
comes in two forms: readM and read. The first form is the mandatory read, where read
only succeeds if it exists in the object. The second form is the read that returns the default
value if necessary.

f ∈Dom(fst(σ(a)))
readM(σ ,a, f )=(fst(σ(a)))( f )

readM(σ ,a, f )=v
read(σ ,a, f )=v

f 6∈Dom(fst(σ(a)))
read(σ ,a, f )=snd(σ(a))

The final two rules define the two cases for the general read function. If the attribute
exists, there is a derivation using readM , otherwise, the default value is returned using the
final rule. Using the read function, the dereference function is defined as deref(σ ,a)=
readM(σ ,a,()). This is used throughout all of the concrete transfer functions.

Next we define the write function that writes a value to an attribute of an object. There
is only one form of write.

write(σ ,a, f ,v) def
=

let (o,d)=σ(a)

let o′=λ f ′. if f = f ′ then v else o( f ′)

λa′. if a=a′ then (o′,d) else σ(a′)

We also define the update function that is used to update bindings throughout the
transfer functions. It is defined using the write function: update(σ ,a,v)=write(σ ,a,(),v).

There are variations of these functions for reading, writing, dereferencing, and updat-
ing sets. These versions are identical to the above except that they operate on set values
instead of scalar value. These versions are suffixed with a S.

We now give the main concrete transfer functions:

Jlet a=attr(a1)Kσ
def
=

let a′1=deref(σ ,a1)

let v=Dom
(
fst(σ(a′1))

)
let σ

′=update(σ ,a,v)

JcKσ
′



Jlet a=a1[a2]Kσ
def
=

let a′1=deref(σ ,a1)

let a′2=deref(σ ,a2)

let v= read(σ ,a′1,a
′
2)

let σ
′=update(σ ,a,v)

JcKσ
′

Ja1[a2] :=a3Kσ
def
=

let a′1=deref(σ ,a1)

let a′2=deref(σ ,a2)

let a′3=deref(σ ,a3)

write(σ ,a′1,a
′
2,a
′
3)

Jlet a=set op(a1,...,an)Kσ
def
=

let a′1=derefS(σ ,a1)

...
...

let a′n=derefS(σ ,an)

let v=set op(a′1,...,a
′
n)

let σ
′=update(S)(σ ,a,v)

JcKσ
′

Where set op() includes set union, set minus, and selecting a single element from a set.
The (S) is used when the update may or may not be a set. If the value is set as it is for a
union operation, the S version is used, otherwise, for example if selecting a single element
from a set, the non-subscripted version is used.

A.2 Abstract Semantics

In this section, we give the abstract transfer functions for object and set manipulating
commands. For each of the concrete helper functions, we define a helper function for the
abstract transfer functions. These provide equivalent functionality. First we define the read
function, which comes in the same two forms as before:

Ŝ`|â|=1 Ŝ`| f̂|=1 Ŝ`|v̂|=1 Ŝ` f̂ ′= f̂ Ĥ= Ĥr∗â · f̂ ′ 7→ v̂

r̂eadM(Ĥ,Ŝ,â, f̂)= v̂

r̂eadM(Ĥ,Ŝ,â, f̂)= v̂

r̂ead(Ĥ,Ŝ,â, f̂)= v̂

Ĥ= Ĥr∗â ·noti 7→ v̂

r̂ead(Ĥ,Ŝ,â, f̂)= v̂



Using the read function, the dereference function is defined as such: d̂eref(Ĥ,Ŝ,â)=
r̂eadM(Ĥ,Ŝ,â,{()}). Consequently the preconditions of the read function are propagated to
deref. The final rule is presented here in a way that is sound, but not necessarily as precise
as it could be implemented. Intuitively this rule could be strengthened to the following: if
there is no derivation in the proof system that by which the first rule can be applied, read
the default if it exists.

The corresponding write function must consider two different cases:

Ĥ= Ĥr∗â ·noti 7→V̂ ′

ŵrite(Ĥ,Ŝ,â, f̂,v̂)=(Ĥ∗â · f̂ 7→ v̂,Ŝ)

Ĥ= Ĥr∗â · f̂ ′ 7→V̂ ′ Ŝ` f̂= f̂ ′

ŵrite(Ĥ,Ŝ,â, f̂,v̂)=(Ĥ∗â · f̂ 7→ v̂,Ŝ)

The first case can only proceed if the object is complete (which it is if the noti attribute
is present) and if f̂ is disjoint from all other attributes in Ĥ(by separation). This writes
when the attribute being written is not present. The second case explicitly removes the
present attribute and replaces it with a new attribute.

The r̂ead() and ŵrite() functions are sound overapproximations of the respective
read() and write() functions under their respective preconditions. The proof is a trivial
substitution proof using the concretization function.

Note that, in these functions, there are implicit preconditions that correspond to
cardinality of specific values. Remember that â is a singleton set representing an address.
When operations use a lower case symbol, the transfer function can only be applied in that
symbol meets the singleton criterion. To meet this criterion, the materialization operation
that is described below can be applied prior to evaluating the transfer function.

̂Jlet â=attr(â1)K(Ĥ,Ŝ) def
=

let â′1= d̂eref(Ĥ,Ŝ,â1)

let F̂= fresh symbol

let {F̂1,···,F̂n}= p̂arts(â′1,Ĥ,Ŝ)

let Ŝ′= Ŝ∧F̂= F̂1∪···∪F̂n

let (Ĥ ′,Ŝ′′)= ûpdate(â,F̂,Ĥ,Ŝ′)

ĴcK(Ĥ ′,Ŝ′′)

This particular transfer function depends on a the helper function p̂arts() that retrieves all
attribute sets for the object at â′1.



̂Jlet â= â1[â2]K(Ĥ,Ŝ) def
=

let â′1= d̂eref(Ĥ,Ŝ,â1)

let â′2= d̂eref(Ĥ,Ŝ,â2)

let v̂= r̂ead(Ĥ,Ŝ,â′1,â
′
2)

let (Ĥ ′,Ŝ′)= ûpdate(Ĥ,Ŝ,â,v̂)

JcK(Ĥ ′,Ŝ′)

̂Jâ1[â2] := â3K(Ĥ,Ŝ) def
=

let â′1= d̂eref(Ĥ,Ŝ,â1)

let â′2= d̂eref(Ĥ,Ŝ,â2)

let â′3= d̂eref(Ĥ,Ŝ,â3)

ŵrite(Ĥ,Ŝ,â1,â2,â3)

̂Jlet â=set op(â1,...,ân)K(Ĥ,Ŝ) def
=

let â′1= d̂erefS(Ĥ,Ŝ,â1)

...
...

let â′n= d̂erefS(Ĥ,Ŝ,ân)

let V̂= fresh symbol

let Ŝ′= Ŝ∧V̂= ŝet op(â′1,...,â
′
n)

let (Ĥ ′,Ŝ′′)= ûpdate(S)(Ĥ,Ŝ′,â,v̂)

JcK(Ĥ ′,Ŝ′′)

Where set op() includes set union, set minus, and selecting a single element from a set.
This operation is turned into the equivalent set domain operation ŝet op().

A.3 Materialization

Because the previously defined abstract transfer functions have preconditions involving
cardinality, it is necessary to use materialization to split summary sets into multiple sets.
The following operations take a single abstract state (Ĥ,Ŝ) and return a set of abstract states.
To get the transfer function defined in Theorem 1 apply the materialization as necessary to
apply command c. Then apply the command to each result of the materialization.



materialize(Ĥ,Ŝ)= Σ̄

MAT-EDGE

Ĥ= Ĥr∗â ·F̂ 7→V̂ Ĥ ′= Ĥr∗â ·F̂1 7→V̂∗â ·F̂2 7→V̂ Ŝ′= Ŝ∧F̂= F̂1]F̂2 Ŝv Ŝ′

materialize(Ĥ,Ŝ)=
{
(Ĥ ′,Ŝ′)

}
MAT-ADDR

Ĥ= Ĥr∗Â ·F̂ 7→V̂
Ĥ ′= Ĥr∗Â1 ·F̂ 7→V̂∗Â2 ·F̂ 7→V̂ Ŝ′= Ŝ∧Â= Â1]Â2 Ŝ′′= Ŝ∧Â 6= Â1]Â2

materialize(Ĥ,Ŝ)=
{
(Ĥ ′,Ŝ′),(Ĥ ′,Ŝ′′)

}
MAT-SET

Ŝ′= Ŝ∧V̂=V̂1]V̂2 Ŝ′′= Ŝ∧V̂ 6=V̂1]V̂2

materialize(Ĥ,Ŝ)=
{
(Ĥ ′,Ŝ′),(Ĥ ′,Ŝ′′)

}
Each materialization operation potentially weakens the abstract state depending on the

precision of the underlying domain operation. Otherwise, the abstract state remains the
same. From this and the abstract transfer functions defined above, the proof of Theorem 1
follows easily.

A.4 Join Algorithm

In this section we present the join algorithm and full soundness condition. The first part of
the join algorithm is a rule form of the templates presented in Section 5. Since the second
template in that section is subsumed by the third template, we need only define rules that
correspond to the first and third templates.

M1,M2,PJ ` Ĥ1tĤ2 ; Ĥ3

JOIN-EMP

M1,M2,PJ `EMPtEMP ;EMP

JOIN-OBJ-DEFAULT

M1(Â1)= Â3 M1(V̂1)=V̂3 M2(Â2)= Â3 M2(V̂2)=V̂3

M1,M2,PJ ` Â1 ·noti 7→V̂1tÂ2 ·noti 7→V̂2 ; Â3 ·noti 7→V̂3

JOIN-OBJ-ATTRS

M1(Â1)= Â3 M1(V̂ i
1)=V̂3 ··· M1(V̂ m

1 )=V̂3

M2(Â2)= Â3 M2(V̂
j

2 )=V̂3 ··· M2(V̂ n
2 )=V̂3

({F̂ i
1,···,F̂m

1 },{F̂
j

2 ,···,F̂
n
2 },F̂3)∈PJ M1,M2,PJ ` Ĥ1tĤ2 ; Ĥ3

M1,M2,PJ ` Â1 ·F̂ i
1 7→V̂ i

1∗···∗Â1 ·F̂m
1 7→V̂ m

1 ∗Ĥ1tÂ2 ·F̂ j
2 7→V̂ j

2 ∗···∗Â2 ·F̂n
2 7→V̂ n

2 ∗Ĥ2
; Â3 ·noti 7→V̂3∗Ĥ3



The rule JOIN-EMP corresponds to the base case for join. It is not represented in the
templates because it is assumed. The rule JOIN-OBJ-DEFAULT is the first template and the
rule JOIN-OBJ-ATTRS is the last template. These rules are only applied to a single object,
not to an entire heap. Therefore, to process the entire heap, we use the following rules:

JOIN-HEAP

Dom
(
Ĥ1
)
={Â1} Dom

(
Ĥ ′1
)
∩{Â1}= /0 Dom

(
Ĥ2
)
={Â2}

Dom
(
Ĥ ′2
)
∩{Â2}= /0 M1,M2,PJ ` Ĥ1tĤ2 ; Ĥ3 M1,M2,PJ ` Ĥ ′1tĤ ′2 ; Ĥ ′3

M1,M2,PJ ` Ĥ1∗Ĥ ′1tĤ2∗Ĥ ′2 ; Ĥ3∗Ĥ ′3

The complete join algorithm is given in the following rule. It joins the heap and joins
the set domain under the same mappings giving a join result.

M1,M2,PJ ` Ĥ1,Ŝ1tĤ2,Ŝ2 ; Ĥ3,Ŝ3

JOIN-ALL

M1,M2,PJ ` Ĥ1tĤ2 ; Ĥ3 M1,M2,PJ ` Ŝ1tŜ2 ; Ŝ3

M1,M2,PJ ` Ĥ1,Ŝ1tĤ2,Ŝ2 ; Ĥ3,Ŝ3

The soundness of join deeply depends on the matchings. Because M1 and M2 to-
gether form something of the same type as PJ . We first combine all of these into a single
representative P. Here we use V̄ to represent sets of symbols:

P=

{
(V̄1,V̄2,V̂3)

∣∣∣∣ V̂3∈Codom(M1)∪Codom(M2)
∧V̄1=

{
V̂1
∣∣M1(V̂1)=V̂3

}
∧V̄2=

{
V̂2
∣∣M1(V̂2)=V̂3

}}∪PJ

Given that M1, M2, and PJ have been captured in a single P, we will use that P as the
sole context in our full soundness statement that implies the statement given in Theorem 2:

if P` Ĥ1,Ŝ1tĤ2,Ŝ2 ; Ĥ3,Ŝ3 then

∀σ ,η1,η2.(η1,σ)∈γ(Ĥ1,Ŝ1)∨(η2,σ)∈γ(Ĥ2,Ŝ2)

∧∀(V̄1,V̄2,V̂3)∈P.
⋃{

η1(V̂1)
∣∣V̂1∈V̄1

}
=
⋃{

η2(V̂2)
∣∣V̂2∈V̄2

}
⇒

∃η3.(η3,σ)∈γ(Ĥ3,Ŝ3)

∧∀(V̄1,V̄2,V̂3)∈P.
⋃{

η1(V̂1)
∣∣V̂1∈V̄1

}
=η3(V̂3)

This theorem holds by simple induction over the derivation of the join.

A.5 Inclusion Algorithm

All of the rules that follow for the inclusion checking algorithm are similar to their the
counterparts in the join algorithm. They are given here for completeness. The rules for
checking inclusion of objects are:



M,PI ` Ĥav Ĥb

INC-EMP

M,PI `EMPvEMP

INC-OBJ-DEFAULT

M(Âa)= Âb M(V̂a)=V̂b

M,PI ` Âa ·noti 7→V̂av Âb ·noti 7→V̂b

INC-OBJ-ATTRS

M(Âa)= Âb
M(V̂ i

a)=V̂b ··· M(V̂ m
a )=V̂b ({F̂ i

a,···,F̂m
a },F̂b)∈PI M,PI ` Ĥav Ĥb

M,PI ` Âa ·F̂ i
a 7→V̂ i

a∗···∗Âa ·F̂m
a 7→V̂ m

a ∗Ĥav Âb ·noti 7→V̂b∗Ĥb

The rule for dividing up objects and checking them each individually is the following:

INC-HEAP

Dom
(
Ĥa
)
={Âa} Dom

(
Ĥ ′a
)
∩{Âa}= /0 M,PI ` Ĥav Ĥb M,PI ` Ĥ ′av Ĥ ′b

M,PI ` Ĥa∗Ĥ ′av Ĥb∗Ĥ ′b
Finally, the inclusion checking algorithm is defined as, given matchings, if the inclusion

holds in both the heap and in the set domain, it holds:

M,PI ` Ĥa,Ŝav Ĥb,Ŝb

INC-ALL

M,PI ` Ĥav Ĥb M,PI ` Ŝav Ŝb

M,PI ` Ĥa,Ŝav Ĥb,Ŝb

The simplified soundness statement (similar to the inclusion checking algorithm
soundness statement in Theorem 2) is the following:

If M,PI ` Ĥa,Ŝav Ĥb,Ŝb then

∀ηa,σ .(ηa,σ)∈γ(Ĥa,Ŝa)⇒∃ηb.(ηb,σ)∈γ(Ĥb,Ŝb)

The expanded version that more precisely captures the relationship between ηa and
ηb follows based on a definition of P that represents all of the matchings in the rules:

P=
{
(V̄a,V̂b)

∣∣V̂b∈Codom(M)∧V̄a=
{

V̂a
∣∣M(V̂a)=V̂b

}}
∪PI

The following soundness statement implies the former and is inductive for the proof.

If M,PI ` Ĥa,Ŝav Ĥb,Ŝb then

∀ηa,σ .(ηa,σ)∈γ(Ĥa,Ŝa)⇒

∃ηb.(ηb,σ)∈γ(Ĥb,Ŝb)∧∀(V̄a,V̂b)∈P.
⋃{

ηa(V̂a)
∣∣V̂a∈V̄a

}
=ηb(V̂b)

The proof is similar to that of join.



B Detailed Results of Evaluation

This section shows the code evaluated in each test and the pre-condition used to initialize
the state. Due to differences between TAJS and HOO, the code given here is simply the
main loop, rather than the whole program. Each system requires special initialization.
Additionally, the HOO implementation only accepts abstract syntax as input, so the AST
was translated to abstract syntax by hand for these tests.

The properties that follow each test are checked against the inferred post-condition.
These results are extracted through a combination of manual inspection of post-conditions
and through test code. This extraction/test code is not shown. A! is shown to indicate
a property that can be proven given the post-condition and a% is shown to indicate a
property that cannot be proven given the post-condition.

There is an implicit assumption that hasOwnProperty is actually looked up in the
global space and is correctly resolved. In absence of surrounding code, it is impossible
to know that this functionality has not been shadowed. The assumption that this has not
occurred is implicit in all of the preconditions.

Listing 1.1 – Static
{EMP}
s = {

x:"a";
y:"b";

};
r = {};
for(var p in s) {

if(s.hasOwnProperty(p))
r[p] = s[p];

}

Property TAJS HOO
r 6=s ! !

r["x"]=s["x"] ! !

r["y"]=s["y"] ! !

p 6= 'x'∧p 6= 'y'→r[p]=s[p]=undefined ! !

Listing 1.2 – Copy

{s 7→ â1∗â1 ·F̂ 7→ Â2∗â1 ·noti 7→undefined}
r = {};
for(var p in s) {

if(s.hasOwnProperty(p))
r[p] = s[p];

}



Property TAJS HOO
r 6=s ! !

p∈attr(r)→ p∈attr(s) % !

p∈attr(s)→ p∈attr(r) % !

p∈attr(r)∩attr(s)→r[p]∈ Â2 % !

Listing 1.3 – Filter

{r 7→ â1 ∗ â1 · F̂1 7→ V̂1 ∗ â1 · noti 7→ undefined ∗s 7→ â2 ∗ â2 · F̂2 7→ V̂2 ∗ â2 · noti 7→
undefined∗c 7→ â3∗â3 ·F̂3 7→V̂3∗â3 ·noti 7→undefined}
for(var p in s) {

if(s.hasOwnProperty(p)) {
if(c.hasOwnProperty(p))

r[p] = "conflict";
else

r[p] = s[p];
}

}

Property TAJS HOO
p∈attr(s)→ p∈attr(r) % !

p∈attr(r)→ p∈attr(s)∪F̂1 % !

p∈attr(r)∧p 6∈attr(s)→ p∈ F̂1 % !

p∈attr(r)∧p∈attr(s)∧p∈attr(c)→r[p]= 'conflict' % !

p∈attr(r)∧p∈attr(s)∧p 6∈attr(c)→r[p]∈V̂2 % !

p∈attr(r)∧p 6∈attr(s)→r[p]∈V̂1 % !

Listing 1.4 – Compose

{r 7→ â1 ∗ â1 · F̂1 7→ V̂1 ∗ â1 · noti 7→ undefined ∗a 7→ â2 ∗ â2 · F̂2 7→ V̂2 ∗ â2 · noti 7→
undefined∗b 7→ â3∗ â3 · F̂3 7→ V̂3∗ â3 · noti 7→ undefined∗c 7→ v̂4∗s 7→ â4∗ â4 · F̂4 7→
v̂4∗â4 ·noti 7→undefined∧F̂4= F̂2∪F̂3}
for(p in s) {
if(s.hasOwnProperty(p)) {

if(a.hasOwnProperty(p) && !b.hasOwnProperty(p))
r[p] = a[p];

else if(b.hasOwnProperty(p) && !a.hasOwnProperty(p))
r[p] = b[p];

else
r[p] = c;

}
}



Property TAJS HOO
p∈attr(r)→ p∈attr(a)∪attr(b)∪F̂1 % !

p∈attr(a)→ p∈attr(r) % !

p∈attr(b)→ p∈attr(r) % !

p∈attr(a)∧p∈attr(b)→r[p]= v̂4 % !

p∈attr(a)∧p 6∈attr(b)→r[p]∈V̂2 % !

p 6∈attr(a)∧p∈attr(b)→r[p]∈V̂3 % !

p∈attr(r)∧p 6∈attr(a)∧p 6∈attr(b)→r[p]∈V̂1 % !

Listing 1.5 – Merge

{s 7→ â2∗â2 ·F̂2 7→V̂2∗â2 ·noti 7→undefined∗t 7→ â3∗â3 ·F̂3 7→V̂3∗â3 ·noti 7→undefined}
var r = {};
for(var p in a) {
if(a.hasOwnProperty(p))

r[p] = a[p];
}
for(p in b) {

if(b.hasOwnProperty(p))
r[p] = b[p];

}

Property TAJS HOO
r 6=a ! !

r 6=b ! !

p∈attr(r)→ p∈attr(a)∪attr(b) % !

p∈attr(a)→ p∈attr(r) % !

p∈attr(b)→ p∈attr(r) % !

p∈attr(b)→r[p]∈V̂3 % !

p∈attr(a)∧p /∈attr(b)→r[p]∈V̂3 % !


